AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Effects of electron-phonon coupling on the phonon transport properties of the Weyl semimetals NbAs and TaAs: A comparative study

Shihao HanQinghang TangHongmei YuanYufeng LuoHuijun Liu( )
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

It has now become recognized that the electron-phonon coupling (EPC) may play an important role in governing the phonon transport, especially for metallic and semiconducting systems at high carrier concentration. Here we focus on the Weyl semimetals TaAs and NbAs and give a comparative study on their phonon transport properties by explicitly including the EPC in first-principles calculations. It is found that the lattice thermal conductivities of both systems are significantly reduced by the EPC, which is more pronounced for the TaAs compared with the NbAs at the same carrier concentration. Detailed analysis indicates that the TaAs exhibits smaller EPC phonon relaxation time, as characterized by stronger EPC strength which is associated with larger deformation potential constant and Born effective charge. Moreover, we see that the TaAs exhibits obviously larger overlap between the EPC relaxation time and that from intrinsic phonon-phonon scattering, which could further reduce the lattice thermal conductivity. Our work not only highlights the vital importance of EPC in accurately predicting the phonon transport behaviors, but also offers a simple alternative to evaluate the EPC strength of various material systems.

References

[1]

Pernot G, Stoffel M, Savic I, Pezzoli F, Chen P. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat Mater 2010;9:491. https://doi.org/10.1038/nmat2752.

[2]

Yeh LT, Chu RC. Thermal Management of Microelectronic Equipment: Heat Transfer Theory, Analysis Methods, and Design Practices. New York: ASME Press; 2002.

[3]

Keyser M, Pesaran A, Li Q, Santhanagopalan S, Smith K, Wood E, et al. Enabling fast charging-Battery thermal considerations. J Power Sources 2017;367:228. https://doi.org/10.1016/j.jpowsour.2017.07.009.

[4]

Zebarjadi M, Esfarjani K, Dresselhaus MS, Ren ZF, Chen G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci 2012;5:5147. https://doi.org/10.1039/C1EE02497C.

[5]

Carrete J, Li W, Mingo N. Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Phys Rev X 2014;4:011019. https://doi.org/10.1103/PhysRevX.4.011019.

[6]

Liao B, Qiu B, Zhou J, Huberman S, Esfarjani K, Chen G. Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study. Phys Rev Lett 2015;114:115901. https://doi.org/10.1103/PhysRevLett.114.115901.

[7]

Wang Y, Lu Z, Ruan X. First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering. J Appl Phys 2016;119:225109. https://doi.org/10.1063/1.4953366.

[8]

Cheng L, Yan QB, Hu M. The role of phonon-phonon and electron-phonon scattering in thermal transport in PdCoO2. Phys Chem Chem Phys 2017;19:21714. https://doi.org/10.1039/C7CP03667A.

[9]

Wang T, Gui Z, Janotti A, Ni C, Karandikar P. Strong effect of electron-phonon interaction on the lattice thermal conductivity in 3C-SiC. Phys Rev Mater 2017;1:034601. https://doi.org/10.1103/PhysRevMaterials.1.034601.

[10]

Fan DD, Liu HJ, Cheng L, Liang JH, Jiang PH. A first-principles study of the effects of electron-phonon coupling on the thermoelectric properties: a case study of the SiGe compound. J Mater Chem A 2018;6:12125. https://doi.org/10.1039/C8TA01806E.

[11]

Huang Y, Zhou J, Wang G, Sun Z. Abnormally strong electron-phonon scattering induced unprecedented reduction in lattice thermal conductivity of two-dimensional Nb2C. J Am Chem Soc 2019;141:8503. https://doi.org/10.1021/jacs.9b01742.

[12]

Tong Z, Li S, Ruan X, Bao H. Comprehensive first-principles analysis of phonon thermal conductivity and electron-phonon coupling in different metals. Phys Rev B 2019;100:144306. https://doi.org/10.1103/PhysRevB.100.144306.

[13]

Liu C, Yao M, Yang J, Xi J, Ke X. Strong electron-phonon interaction induced significant reduction in lattice thermal conductivities for single-layer MoS2 and PtSSe. Mater Today Phys 2020;15:100277. https://doi.org/10.1016/j.mtphys.2020.100277.

[14]

Yang X, Liu Z, Meng F, Li W. Tuning the phonon transport in bilayer graphene to an anomalous regime dominated by electron-phonon scattering. Phys Rev B 2021;104:L100306. https://doi.org/10.1103/PhysRevB.104.L100306.

[15]

Quan Y, Yue S, Liao B. Impact of electron-phonon interaction on thermal transport: a review. Nanoscale Microscale Thermophys Eng 2021;25:73. https://doi.org/10.1080/15567265.2021.1902441.

[16]

Yang X, Jena A, Meng F, Wen S, Ma J, Li X, et al. Indirect electro-phonon interaction leading to significant reduction of thermal conductivity in graphene. Mater Today Phys 2021;18:100315. https://doi.org/10.1016/j.mtphys.2020.100315.

[17]

Ding J, Liu C, Xi L, Xi J, Yang J. Thermoelectric transport properties in chalcogenides ZnX (X=S, Se): from the role of electron-phonon couplings. J Materiomics 2021;7:310. https://doi.org/10.1016/j.jmat.2020.10.007.

[18]

Yan B, Felser C. Topological materials: Weyl semimetals. Annu Rev Condens Matter Phys 2017;8:337. https://doi.org/10.1146/annurev-conmatphys-031016-025458.

[19]

Nandy S, Sharma G, Taraphder A, Tewari S. Chiral anomaly as the origin of the planar Hall effect in Weyl semimetals. Phys Rev Lett 2017;119:176804. https://doi.org/10.1103/PhysRevLett.119.176804.

[20]

Ferreiros Y, Zyuzin AA, Bardarson JH. Anomalous Nernst and thermal Hall effects in tilted Weyl semimetals. Phys Rev B 2017;96:115202. https://doi.org/10.1103/PhysRevB.96.115202.

[21]

Kundu A, Siu ZB, Yang H, Jalil MBA. Magnetotransport of Weyl semimetals with tilted Dirac cones. New J Phys 2020;22:083081. https://doi.org/10.1088/1367-2630/aba98d.

[22]

Shojaei IA, Pournia S, Le C, Ortiz BR, Jnawali G, Zhang F-C, et al. A Raman probe of phonons and electron-phonon interactions in the Weyl semimetal NbIrTe4. Sci Rep 2021;11:8155. https://doi.org/10.1038/s41598-021-87302-y.

[23]

Sklyadneva IY, Heid R, Echenique PM, Chulkov EV. Electron-phonon coupling in the magnetic Weyl semimetal ZrCo2Sn. Phys Rev B 2021;103:024303. https://doi.org/10.1103/PhysRevB.103.024303.

[24]

Xu S-Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 2015;7:613. https://doi.org/10.1126/science.aaa9297.

[25]

Weng H, Fang C, Fang Z, Bernevig BA, Dai X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys Rev X 2015;5:011029. https://doi.org/10.1103/PhysRevX.5.011029.

[26]

Xu N, Weng HM, Lv BQ, Matt CE, Park J, Bisti F, et al. Observation of Weyl nodes and Fermi arcs in tantalum phosphide. Nat Commun 2016;7:11006. https://doi.org/10.1038/ncomms11006.

[27]

Peng B, Zhang H, Shao H, Lu H, Zhang DW, Zhu H. High thermoelectric performance of Weyl semimetal TaAs. Nano Energy 2016;30:225. https://doi.org/10.1016/j.nanoen.2016.10.016.

[28]

Aggarwal L, Gayen S, Das S, Kumar R, Süβ V, Felser C, Shekhar C, et al. Mesoscopic superconductivity and high spin polarization coexisting at metallic point contacts on Weyl semimetal TaAs. Nat Commun 2017;8:13974. https://doi.org/10.1038/ncomms13974.

[29]

Xu B, Dai YM, Zhao LX, Wang K, Yang R, Zhang W, et al. Temperature-tunable Fano resonance induced by strong coupling between Weyl fermions and phonons in TaAs. Nat Commun 2017;8:14933. https://doi.org/10.1038/ncomms14933.

[30]

Zhang C-L, Yuan Z, Jiang Q-D, Tong B, Zhang C, Xie XC, et al. Electron scattering in tantalum monoarsenide. Phys Rev B 2017;95:085202. https://doi.org/10.1103/PhysRevB.95.085202.

[31]

Garcia CAC, Coulter J, Narang P. Optoelectronic response of the type-Ⅰ Weyl semimetals TaAs and NbAs from first principles. Phys Rev Res 2020;2:013073. https://doi.org/10.1103/PhysRevResearch.2.013073.

[32]

Singh S, Süβ V, Schmidt M, Felser C, Shekhar C. Strong correlation between mobility and magnetoresistance in Weyl and Dirac semimetals. J Phys Mater 2020;3:024003. https://doi.org/10.1088/2515-7639/ab6c34.

[33]

Ouyang T, Xiao H, Tang C, Hu M, Zhong J. Anisotropic thermal transport in Weyl semimetal TaAs: a first principles calculation. Phys Chem Chem Phys 2016;18:16709. https://doi.org/10.1039/C6CP02935C.

[34]

Xiang J, Hu S, Lv M, Zhang J, Zhang H, Chen G, et al. Anisotropic thermal and electrical transport of Weyl semimetal TaAs. J Phys Condens Matter 2017;29:485501. https://doi.org/10.1088/1361-648X/aa964b.

[35]

Jones RO. Density functional theory: its origins, rise to prominence, and future. Rev Mod Phys 2015;87:897. https://doi.org/10.1103/RevModPhys.87.897.

[36]

Baroni S, de Gironcoli S, Corso AD, Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 2001;73:515. https://doi.org/10.1103/RevModPhys.73.515.

[37]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6:15. https://doi.org/10.1016/0927-0256(96)00008-0.

[38]

Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of material. J Phys Condens Matter 2009;21:395502. https://doi.org/10.1088/0953-8984/21/39/395502.

[39]

Hartwigsen C, Goedecker S, Hutter J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys Rev B 1998;58:3641. https://doi.org/10.1103/PhysRevB.58.3641.

[40]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865. https://doi.org/10.1103/PhysRevLett.77.3865.

[41]

Li W, Carrete J, Katcho NA, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput Phys Commun 2014;185:1747. https://doi.org/10.1016/j.cpc.2014.02.015.

[42]

Yang J-Y, Qin GZ, Hu M. Nontrivial contribution of Fröhlich electron-phonon interaction to lattice thermal conductivity of wurtzite GaN. Appl Phys Lett 2016;109:242103. https://doi.org/10.1063/1.4971985.

[43]

Walukiewicz W, Lagowski L, Jastrzebski L, Lichtensteiger M, Gatos HC. Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio. J Appl Phys 1979;50:899. https://doi.org/10.1063/1.326008.

[44]

Zhou Y, Zhao Y-Q, Zeng Z-Y, Chen X-R, Geng H-Y. Anisotropic thermoelectric properties of Weyl semimetal NbX (X = P and As): a potential thermoelectric material. Phys Chem Chem Phys 2019;21:15167. https://doi.org/10.1039/C9CP02020A.

[45]

Liu Y, Fu C, Xia K, Yu J, Zhao X, Pan H, et al. Lanthanide contraction as a design factor for high-performance half-heusler thermoelectric materials. Adv Mater 2018;30:1800881. https://doi.org/10.1002/adma.201800881.

[46]

Lee C-C, Xu S-Y, Huang S-M, Sanchez DS, Belopolski I, Chang G, et al. Fermi surface interconnectivity and topology in Weyl fermion semimetals TaAs, TaP, NbAs, and NbP. Phys Rev B 2015;92:235104. https://doi.org/10.1103/PhysRevB.92.235104.

[47]

Sankar R, Peramaiyan G, Muthuselvam IP, Xu S, Hasan MZ, Chou FC. Crystal growth and transport properties of Weyl semimetal TaAs. J Phys Condens Matter 2018;30:015803. https://doi.org/10.1088/1361-648X/aa9a75.

[48]

Noffsinger J, Giustino F, Malone BD, Park C-H, Louie SG, Cohen ML. EPW: a program for calculating the electron-phonon coupling using maximally localized Wannier functions. Comput Phys Commun 2010;181:2140. https://doi.org/10.1016/j.cpc.2010.08.027.

[49]

Grimvall G. Selected topics in solid state Physics. New York: North-Holland Press; 1981.

[50]

Poncé S, Margine ER, Verdi C, Giustion F. EPW: electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput Phys Commun 2016;209:116. https://doi.org/10.1016/j.cpc.2016.07.028.

[51]

Bardeen J, Shockley W. Deformation potentials and mobilities in non-polar crystals. Phys Rev 1950;80:72. https://doi.org/10.1103/PhysRev.80.72.

[52]

Lundstrom M. Fundamentals of carrier transport. Cambridge, England: Cambridge University Press; 2009.

[53]

Liu T-H, Zhou J, Xu Q, Qian X, Song B, Yang R. Significant suppression of phonon transport in polar semiconductors owing to electron-phonon-induced dipole coupling: an effect of breaking centrosymmetry. Mater Today Phys 2022;22:100598. https://doi.org/10.1016/j.mtphys.2021.100598.

[54]

Liu H, Yang C, Wei B, Jin L, Alatas A, Said A, et al. Anomalously suppressed thermal conduction by electron-phonon coupling in charge-density-wave tantalum disulfide. Adv Sci 2020;7:1902071. https://doi.org/10.1002/advs.201902071.

[55]

Kundu A, Ma J, Carrete J, Madsen GKH, Li W. Anomalously large lattice thermal conductivity in metallic tungsten carbide and its origin in the electronic structure. Mater Today Phys 2020;13:100214. https://doi.org/10.1016/j.mtphys.2020.100214.

Journal of Materiomics
Pages 520-526
Cite this article:
Han S, Tang Q, Yuan H, et al. Effects of electron-phonon coupling on the phonon transport properties of the Weyl semimetals NbAs and TaAs: A comparative study. Journal of Materiomics, 2023, 9(3): 520-526. https://doi.org/10.1016/j.jmat.2022.12.001

225

Views

4

Crossref

3

Web of Science

4

Scopus

Altmetrics

Received: 13 September 2022
Revised: 17 November 2022
Accepted: 01 December 2022
Published: 19 December 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return