Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In this work, a series of ZnxMg1.99-xSnO4:0.01Mn2+ (x = 0, 0.01, 0.02, 0.03, 0.04) green long afterglow phosphors are prepared by high-temperature solid-phase reaction. The photoluminescence and long afterglow performance of host material doped with Zn2+ are investigated. The results show that the emission peak of Mn2+ is red-shifted by 5 nm with increasing Zn2+ concentration. Zn0.03Mg1.96SnO4:0.01Mn2+ phosphor has the strongest green luminescence intensity with the chromaticity coordinates of (0.0857, 0.6083) under 270 nm, and Zn0.01Mg1.98SnO4:0.01Mn2+ phosphor has superior long afterglow performance with average lifetime of 102.41s. The afterglow decay and thermoluminescence curve of phosphor are used to explain the mechanism of long afterglow luminescence. Meanwhile, the afterglow intensity distribution of each pixel in Zn0.01Mg1.98SnO4:0.01Mn2+ coating samples is carried out by hyperspectral imaging, and the optimal luminescence intensity and uniformity of the sample are obtained at a phosphor/epoxy mass ratio of 0.0025. Therefore, Zn0.01Mg1.98SnO4:0.01Mn2+ can be a potential candidate of novel long afterglow phosphors, and hyperspectral imaging also provides new research approaches for the rational proportioning of luminescent materials.
Zheng S, Shi J, Fu X, Wang C, Sun X, Chen C, et al. X-ray recharged long afterglow luminescent nanoparticles MgGeO3:Mn2+,Yb3+,Li+ in the first and second biological windows for long-term bioimaging. Nanoscale 2020;12:14037-46.
Qiu K, Li P, Meng X, Liu J, Bao Q, Li Y, et al. Trap distribution and mechanism for near infrared long-afterglow material AlMgGaO4:Cr3+. Dalton Trans 2019;48:618.
Hai O, Zhang Z, Ren Q, Wu X, Zhang Q, Zeng B, et al. The preparation and functional studies of the porous long afterglow luminescent materials. Dyes Pigments 2018;156:160-6.
Hai O, Yang E, Wei B, Ren Q, Wu X, Zhu J. The trap control in the long afterglow luminescent material (Ca,Sr)2MgSi2O7:Eu2+,Dy3+. J Solid State Chem 2020;283(8):121174.
Hai O, Ren Q, Wu X, Zhang Q, Zhang Z. Insights into the element gradient in the grain and luminescence mechanism of the long afterglow material Sr2MgSi2O7: Eu2+,Dy3+. J Alloys Compd 2018;779:892-9.
Fu X, Liu Y, Meng Y, Zhang H. Long afterglow green luminescence of Tb3+ ion in Ga4GeO8 through persistent energy transfer from host to Tb3+. J Lumin 2021;237(1):118149.
Li H, Li R, Chang C. Eu2+, Dy3+: Sr2B5O9Cl, a new blue-emitting phosphor with long persistence. Ceram Int 2021;47:30156-63.
Costa J, Lima L, Santos I, Silva M, Maia A. Structural and photocatalytic properties of Mg2SnO4 spinel obtained by modified Pechini method. Mater Lett 2019;236:320-3.
Premkumar V, Sivakumar G. Hydrothermally synthesized cubic magnesium stannate (Mg2SnO4) nanoparticles and its electrochemical performances. J Mater Sci Mater Electron 2017;28(19):14226-33.
Xie W, Jiang W, Zhou R, Li J, Ding J, Ni H, et al. Disorder-induced broadband near-infrared persistent and photostimulated luminescence in Mg2SnO4:Cr3+. Inorg Chem 2021;60:2219-27.
Zhang J, Qin Q, Yu M, Zhou M, Wang Y. The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors. J Lumin 2012;132(1):23-6.
Li J, Pang R, Sun W, Wu H, Li H, Jiang L, et al. A new blue long-lasting phosphorescence phosphor Mg2SnO4:Bi3+: synthesis and luminescence properties. J Mater Sci Mater Electron 2018;29:4163-70.
Kitaura M, Tani S, Mitsudo S, Fukui K. Characterization of zinc magnesium stannate phosphor fine particles synthesized by electromagnetic wave heating. J Vac Sci Technol B 2010;28(2).
Lei B, Li B, Wang X, Li W. Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4:Mn2+ phosphor. J Lumin 2006;118(2):173-8.
Chen Y. Elucidating the microwave dielectric properties of (Mg1-xZnx)2SnO4 ceramics. J Alloys Compd 2012;527(25):84-9.
Shang M, Li G, Yang D, Kang X, Peng C, Zheng Z, et al. (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties. Dalton Trans 2011;40(37):9379-87.
Heitsch S, Zimmermann G, Fritsch D, Sturm C, Schmidt-Grund R, Schulz C, et al. Luminescence and surface properties of MgxZn1-xO thin films grown by pulsed laser deposition. J Appl Phys 2007;101(8). 1237-18.
Sharma S, Gourier D, Viana B, Maldiney T, Teston E, Scherman D, et al. Persistent luminescence of AB2O4:Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: new biomarkers for in vivo imaging. Opt Mater 2014;36(11):1901-6.
Dazai T, Yasui S, Taniyama T, Itoh M. Bandgap tuning and optimization of green-emitting Zn2SnO4-Mg2SnO4:Mn2+ using combinatorial pulsed laser deposition. Ceram Int 2020;46(13):21771-4.
Chiatti C, Fabiani C, Cotana F, Pisello A. Exploring the potential of photoluminescence for urban passive cooling and lighting applications: a new approach towards materials' optimization. Energy 2021;231:120815.
Li Q, Wang W, Chao M, Zhu Z. Detection of physical defects in solar cells by hyperspectral imaging technology. Opt Laser Technol 2010;42(6):1010-3.
Olsen E, Flø A. Spectral and spatially resolved imaging of photoluminescence in multicrystalline silicon wafers. Appl Phys Lett 2011;99(1):6.
Garskaite E, Flø A, Van Helvoort A, Kareiva A, Olsen E. Investigations of near IR photoluminescence properties in TiO2:Nd,Yb materials using hyperspectral imaging methods. J Lumin 2013;140:57-64.
Song E, Ding S, Wu M, Ye S, Xiao F, Zhou S, et al. Anomalous NIR luminescence in Mn2+-doped fluoride perovskite nanocrystals. Adv Opt Mater 2014;2(7):670-8.
Boonin K, Yamsuk Y, Yasaka P, Kaewkhao J. Red emission glass from Mn2+ doped in zinc barium aluminoborate glasses. Mater Today Proc 2021;43(8):2475-83.
Song E, Ding S, Wu M, Ye S, Xiao F, Dong G, et al. Temperature-tunable upconversion luminescence of perovskite nanocrystals KZnF3:Yb3+,Mn2+. J Mater Chem C 2013;1:4209-15.
Huang S, Wei Z, Wu X, Shi J. Optical properties and theoretical study of Mn doped ZnAl2O4 nanoparticles with spinel structure. J Alloys Compd 2020;825:154004.
Zheng C, Liu Q. Luminescent properties of a new cyan long afterglow phosphor CaSnO3:Lu3+. RSC Adv 2019;9(58):33596-601.
Wu H, Hu Y, Wang Y, Fu C. The luminescent properties of the substitution of Ho3+ for Dy3+ in the M2MgSi2O7: Eu2+, Dy3+ (M:Sr,Ca) long afterglow phosphors. Mater Sci Eng B 2010;172(3):276-82.
Kumar A, Manam J. Optical thermometry using up and down conversion photoluminescence mechanism in Y2Zr2O7: Er3+ phosphors with excellent sensing sensitivity. J Alloys Compd 2020;829:154610.
Behrh G, Isobe M, Massuyeau F, Serier-Brault H, Gordon E, Koo H, et al. Oxygen-vacancy-induced midgap states responsible for the fluorescence and the long-lasting phosphorescence of the inverse spinel Mg(Mg,Sn)O4. Chem Mater 2017;29:1069-75.
Zhou D, Wang Z, Song Z, Wang F, Zhang S, Liu Q. Enhanced persistence properties through modifying the trap depth and density in Y3Al2Ga3O12:Ce3+,Yb3+ phosphor by Co-doping B3+. Inorg Chem 2019;58(2):1684-9.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).