AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Interplay of polarization, strength, and loss in dielectric films for capacitive energy storage: Current status and future directions

Hao PanaYizhe JiangaJudith L. MacManus-Driscollb( )
Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

References

[1]

Palneedi H, Peddigari M, Hwang G, Jeong D, Ryu J. High-performance dielectric ceramic films for energy storage capacitors: progress and Outlook. Adv Funct Mater 2018;28:1803665.

[2]

Pan H, Kursumovic A, Lin Y, Nan C, MacManus-Driscoll JL. Dielectric films for high performance capacitive energy storage: multiscale engineering. Nanoscale 2020;12:19582-91.

[3]

Cheng H, Ouyang J, Zhang Y, Ascienzo D, Li Y, Zhao Y, Ren Y. Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films. Nat Commun 2017;8:1999.

[4]

Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat Commun 2018;9:1813.

[5]

Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019;365:578-82.

[6]

Pan H, Lan S, Xu S, Zhang Q, Yao H, Liu Y, Meng F, Guo E, Gu L, Yi D, Renshaw Wang X, Huang H, MacManus-Driscoll JL, Chen L, Jin K, Nan C, Lin Y. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 2021;374:100-4.

[7]

Cho S, Yun C, Kim YS, Wang H, Jian J, Zhang W, Huang J, Wang X, Wang H, MacManus-Driscoll JL. Strongly enhanced dielectric and energy storage properties in lead-free perovskite titanate thin films by alloying. Nano Energy 2018;45:398-406.

[8]

Kursumovic A, Li WW, Cho S, Curran PJ, Tjhe DHL, MacManus-Driscoll JL. Lead-free relaxor thin films with huge energy density and low loss for high temperature applications. Nano Energy 2020;71:104536.

[9]

Pan H, Feng N, Xu X, Li W, Zhang Q, Lan S, Liu Y, Sha H, Bi K, Xu B, Ma J, Gu L, Yu R, Shen Y, Wang XR, MacManus-Driscoll JL, Chen C, Nan C, Lin Y. Enhanced electric resistivity and dielectric energy storage by vacancy defect complex. Energy Storage Mater 2021;42:836-44.

[10]

Kim J, Saremi S, Acharya M, Velarde G, Parsonnet E, Donahue P, Qualls A, Garcia D, Martin LW. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 2020;369:81-4.

[11]

Fan Q, Liu M, Ma C, Wang L, Ren S, Lu L, et al. Significantly enhanced energy storage density with superior thermal stability by optimizing Ba(Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure. Nano Energy 2018;51:539-45.

[12]

Yang B, Zhang Y, Pan H, Si W, Zhang Q, Shen Z, et al. High-entropy enhanced capacitive energy storage. Nat Mater 2022;21:1074-80.

[13]

Lee OJ, Misra S, Wang H, MacManus-Driscoll JL. Ferroelectric/multiferroic self-assembled vertically aligned nanocomposites: current and future status. Apl Mater 2021;9:030904.

[14]

Silva JPB, Sekhar KC, Pan H, MacManus-Driscoll JL, Pereira M. Advances in dielectric thin films for energy storage applications, revealing the promise of group Ⅳ binary oxides. ACS Energy Lett 2021;6:2208-17.

[15]

Fichtner S, Wolff N, Lofink F, Kienle L, Wagner B. AlScN: a Ⅲ-Ⅴ semiconductor based ferroelectric. J Appl Phys 2019;125:114103.

Journal of Materiomics
Pages 516-519
Cite this article:
Pan H, Jiang Y, MacManus-Driscoll JL. Interplay of polarization, strength, and loss in dielectric films for capacitive energy storage: Current status and future directions. Journal of Materiomics, 2023, 9(3): 516-519. https://doi.org/10.1016/j.jmat.2022.11.010

184

Views

8

Crossref

10

Web of Science

9

Scopus

Altmetrics

Received: 28 September 2022
Revised: 31 October 2022
Accepted: 24 November 2022
Published: 19 December 2022
© 2022 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return