AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Bandgap engineering of high mobility two-dimensional semiconductors toward optoelectronic devices

Qiaoyan HaoaPeng Lia,bJidong LiuaJiarui HuangaWenjing Zhanga( )
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518103, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Over the last few years, great advances have been achieved in exploration of high-mobility two-dimensional (2D) semiconductors such as metal chalcogenide InSe and noble-transition-metal dichalcogenide PdSe2. These materials are competitive candidates for constructing next-generation optoelectronic devices owing to their unique crystalline and electronic structures. Moreover, the optical and electronic properties of 2D materials can be efficiently modified via precisely engineering their band structures, which is critical for widening specific applications ranging from high-performance optoelectronics to catalysis and energy harvesting. In this review, we focus on the progress in bandgaps engineering of newly emerging high-mobility 2D semiconductors and their applications in optoelectronic devices, incorporating our recent study in the InSe and PdSe2 systems. First of all, we discuss the structure-property relationship of typical high-mobility 2D semiconductors (InSe and PdSe2). Next, we analyze several viable strategies for bandgap engineering, including thickness, strain or pressure, alloying, heterostructure, surface modification, intercalation, and so on. Furthermore, we summarize the optoelectronic devices fabricated with such high-mobility 2D semiconductors. The conclusion and outlook in this topic are finally presented. This review aims to provide valuable insights in bandgap engineering of newly emerging 2D semiconductors and explore their potential in future optoelectronic applications.

References

[1]

Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today 2017;20(3):116-30.

[2]

Cai H, Gu Y, Lin Y-C, Yu Y, Geohegan DB, Xiao K. Synthesis and emerging properties of 2D layered Ⅲ-Ⅵ metal chalcogenides. Appl Phys Rev 2019;6(4):041312.

[3]

Pi L, Li L, Liu K, Zhang Q, Li H, Zhai T. Recent progress on 2D noble-transition-metal dichalcogenides. Adv Funct Mater 2019;29(51):1904932.

[4]

Kempt R, Kuc A, Heine T. Two-dimensional noble-metal chalcogenides and phosphochalcogenides. Angew Chem Int Ed Engl 2020;59(24):9242-54.

[5]

Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron 2018;1(4):228-36.

[6]

Yang Z, Hao J. Recent progress in 2D layered Ⅲ-Ⅵ semiconductors and their heterostructures for optoelectronic device applications. Adv Mater Technol 2019;4(8):1900108.

[7]

Li M, Yang FS, Hsiao YC, Lin CY, Wu HM, Yang SH, et al. Low-voltage operational, low-power consuming, and high sensitive tactile switch based on 2D layered InSe tribotronics. Adv Funct Mater 2019;29(19):1809119.

[8]

Bandurin DA, Tyurnina AV, Yu GL, Mishchenko A, Zolyomi V, Morozov SV, et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol 2017;12(3):223-7.

[9]

Zeng LH, Wu D, Lin SH, Xie C, Yuan HY, Lu W, et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv Funct Mater 2019;29(1):1806878.

[10]

Oyedele AD, Yang S, Liang L, Puretzky AA, Wang K, Zhang J, et al. PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J Am Chem Soc 2017;139(40):14090-7.

[11]

Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, et al. A library of atomically thin metal chalcogenides. Nature 2018;556(7701):355-9.

[12]

Yu P, Lin J, Sun L, Le QL, Yu X, Gao G, et al. Metal-semiconductor phase-transition in WSe2(1-x) Te2x monolayer. Adv Mater 2017;29(4):1603991.

[13]

Sun H, Zhou X, Wang X, Xu L, Zhang J, Jiang K, et al. P-N conversion of charge carrier types and high photoresponsive performance of composition modulated ternary alloy W(SxSe1-x)2 field-effect transistors. Nanoscale 2020;12(28):15304-17.

[14]

Zhang W, Wang Q, Chen Y, Wang Z, Wee ATS. Van der Waals stacked 2D layered materials for optoelectronics. 2D Mater 2016;3(2):022001.

[15]

Ho C-H. Thickness-dependent carrier transport and optically enhanced transconductance gain in Ⅲ-Ⅵ multilayer InSe. 2D Mater 2016;3(2):025019.

[16]

Feng W, Wu J-B, Li X, Zheng W, Zhou X, Xiao K, et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J Mater Chem C 2015;3(27):7022-8.

[17]

Zhou J, Lin Z, Ren H, Duan X, Shakir I, Huang Y, et al. Layered intercalation materials. Adv Mater 2021;33(25):2004557.

[18]

Hao Q, Liu J, Wang G, Chen J, Gan H, Zhu J, et al. Surface-modified ultrathin InSe nanosheets with enhanced stability and photoluminescence for high-performance optoelectronics. ACS Nano 2020;14(9):11373-82.

[19]

Zhang L, Hao Q, Liu J, Zhou J, Zhang W, Li Y. Rolling up of 2D nanosheets into 1D nanoscrolls: visible-light-activated chemiresistors based on surface modified indium selenide with enhanced sensitivity and stability. Chem Eng J 2022;446(2):136937.

[20]

Li P, Hao Q, Liu J, Qi D, Gan H, Zhu J, et al. Flexible photodetectors based on all-solution-processed Cu electrodes and InSe nanoflakes with high stabilities. Adv Funct Mater 2021;32(10):2108261.

[21]

Hao Q, Yi H, Liu J, Wang Y, Chen J, Yin X, et al. Bandgap engineering of ternary ε-InSe1-xSx and ε-InSe1-yTey single crystals for high-performance electronics and optoelectronics. Adv Opt Mater 2022;10(13):2200063.

[22]

Zhao S, Wu J, Jin K, Ding H, Li T, Wu C, et al. Highly polarized and fast photoresponse of black phosphorus-InSe vertical P-N heterojunctions. Adv Funct Mater 2018;28(34):1802011.

[23]

Mudd GW, Svatek SA, Hague L, Makarovsky O, Kudrynskyi ZR, Mellor CJ, et al. High broad-band photoresponsivity of mechanically formed InSe-Graphene van der Waals heterostructures. Adv Mater 2015;27(25):3760-6.

[24]

Ahmad W, Liu J, Jiang J, Hao Q, Wu D, Ke Y, et al. Strong interlayer transition in few-layer InSe/PdSe2 van der Waals heterostructure for near-infrared photodetection. Adv Funct Mater 2021;31(43):2104143.

[25]

Zeng LH, Chen QM, Zhang ZX, Wu D, Yuan H, Li YY, et al. Multilayered PdSe2/perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv Sci 2019;6(19):1901134.

[26]

Zhong J, Wu B, Madoune Y, Wang Y, Liu Z, Liu Y. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res 2021;15(3):2489-96.

[27]

Xiong J, Sun Y, Wu L, Wang W, Gao W, Huo N, et al. High performance self-driven polarization-sensitive photodetectors based on GeAs/InSe heterojunction. Adv Opt Mater 2021;9(20):2101017.

[28]

Wu D, Guo J, Du J, Xia C, Zeng L, Tian Y, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019;13(9):9907-17.

[29]

Li Y, Chen S, Yu Z, Li S, Xiong Y, Pam ME, et al. In-memory computing using memristor arrays with ultrathin 2D PdSeOx/PdSe2 heterostructure. Adv Mater 2022;34(26):2201488.

[30]

Jiang J, Meng F, Cheng Q, Wang A, Chen Y, Qiao J, et al. Low lattice mismatch InSe-Se vertical van der Waals heterostructure for high-performance transistors via strong Fermi-level depinning. Small Methods 2020;4(8):2000238.

[31]

Wang Y, Pang J, Cheng Q, Han L, Li Y, Meng X, et al. Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett 2021;13(1):143.

[32]

Han G, Chen ZG, Drennan J, Zou J. Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small 2014;10(14):2747-65.

[33]

Bergeron H, Lebedev D, Hersam MC. Polymorphism in post-dichalcogenide two-dimensional materials. Chem Rev 2021;121(4):2713-75.

[34]

Bergeron H, Guiney LM, Beck ME, Zhang C, Sangwan VK, Torres-Castanedo CG, et al. Large-area optoelectronic-grade InSe thin films via controlled phase evolution. Appl Phys Rev 2020;7(4):041402.

[35]

Sun Y, Li Y, Li T, Biswas K, Patane A, Zhang L. New polymorphs of 2D indium selenide with enhanced electronic properties. Adv Funct Mater 2020;30(31):2001920.

[36]

Hao Q, Yi H, Su H, Wei B, Wang Z, Lao Z, et al. Phase identification and strong second harmonic generation in pure epsilon-InSe and its alloys. Nano Lett 2019;19(4):2634-40.

[37]

Li W, Li J. Piezoelectricity in two-dimensional group-Ⅲ monochalcogenides. Nano Res 2015;8(12):3796-802.

[38]

Iordanidou K, Houssa M, Kioseoglou J, Afanas’ev VV, Stesmans A, Persson C. Hole-doped 2D InSe for spintronic applications. ACS Appl Nano Mater 2018;1(12):6656-65.

[39]

Mudd GW, Svatek SA, Ren T, Patane A, Makarovsky O, Eaves L, et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv Mater 2013;25(40):5714-8.

[40]

Hamer MJ, Zultak J, Tyurnina AV, Zolyomi V, Terry D, Barinov A, et al. Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy. ACS Nano 2019;13(2):2136-42.

[41]

Yu J, Kuang X, Li J, Zhong J, Zeng C, Cao L, et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat Commun 2021;12(1):1083.

[42]

Selb E, Tribus M, Heymann G. Verbeekite, the long-unknown crystal structure of monoclinic PdSe2. Inorg Chem 2017;56(10):5885-91.

[43]

ElGhazali MA, Naumov PG, Mirhosseini H, Süß V, Müchler L, Schnelle W, et al. Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2. Phys Rev B 2017;96(6):060509.

[44]

Lei W, Zhang S, Heymann G, Tang X, Wen J, Zheng X, et al. A new 2D high-pressure phase of PdSe2 with high-mobility transport anisotropy for photovoltaic applications. J Mater Chem C 2019;7(7):2096. 05.

[45]

Lu LS, Chen GH, Cheng HY, Chuu CP, Lu KC, Chen CH, et al. Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano 2020;14(4):4963-72.

[46]

Xie C, Jiang S, Gao Y, Hong M, Pan S, Zhao J, et al. Giant thickness-tunable bandgap and robust air stability of 2D palladium diselenide. Small 2020;16(19):2000754.

[47]

Oyedele AD, Yang S, Feng T, Haglund AV, Gu Y, Puretzky AA, et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J Am Chem Soc 2019;141(22):8928-36.

[48]

Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett 2010;10(4):1271-5.

[49]

Sun ZY, Li Y, Xu B, Chen H, Wang P, Zhao SX, et al. Tailoring the energy funneling across the interface in InSe/MoS2 heterostructures by electrostatic gating and strain engineering. Adv Opt Mater 2021;9(19):2100438.

[50]

Kim H-g, Choi HJ. Quasiparticle band structures of bulk and few-layer PdSe2 from first-principles GW calculations. Phys Rev B 2021;103(16):165419.

[51]

Wei TR, Jin M, Wang YC, Chen HY, Gao ZQ, Zhao KP, et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 2020;369(6503):542-5.

[52]

Song C, Fan F, Xuan N, Huang S, Zhang G, Wang C, et al. Largely tunable band structures of few-layer InSe by uniaxial strain. ACS Appl Mater Interfaces 2018;10(4):3994. 00.

[53]

Hu T, Zhou J, Dong J. Strain induced new phase and indirect-direct band gap transition of monolayer InSe. Phys Chem Chem Phys 2017;19(32):21722-8.

[54]

Li Y, Wang T, Wu M, Cao T, Chen Y, Sankar R, et al. Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering. 2D Mater 2018;5(2):021002.

[55]

Dai M, Chen H, Wang F, Hu Y, Wei S, Zhang J, et al. Robust piezo-phototronic effect in multilayer gamma-InSe for high-performance self-powered flexible photodetectors. ACS Nano 2019;13(6):7291-9.

[56]

Liu S, Yang Y, Yu F, Wen X, Gui Z, Peng K, et al. Pressure-induced superconductivity and nontrivial band topology in compressed γ-InSe. Phys Rev B 2022;105(21):214506.

[57]

Su H, Liu X, Wei C, Li J, Sun Z, Liu Q, et al. Pressure-controlled structural symmetry transition in layered InSe. Laser Photonics Rev; 2019, 1900012.

[58]

Li H, Han X, Pan D, Yan X, Wang H-W, Wu C, et al. Bandgap engineering of InSe single crystals through S substitution. Cryst Growth Des 2018;18(5):2899. 04.

[59]

Yu M, Hu Y, Gao F, Dai M, Wang L, Hu P, et al. High-performance devices based on InSe-In1-xGaxSe van der Waals heterojunctions. ACS Appl Mater Interfaces 2020;12(22):24978-83.

[60]

Yu M, Li H, Liu H, Qin F, Gao F, Hu Y, et al. Synthesis of two-dimensional alloy Ga0.84In0.16Se nanosheets for high-performance photodetector. ACS Appl Mater Interfaces 2018;10(50):43299. 04.

[61]

Hao Q, Liu J, Dong W, Yi H, Ke Y, Tang S, et al. Visible to near-infrared photodetector with novel optoelectronic performance based on graphene/S-doped InSe heterostructure on h-BN substrate. Nanoscale 2020;12(37):19259-66.

[62]

Liu W, Osanloo MR, Wang X, Li S, Dhale N, Wu H, et al. New verbeekite-type polymorphic phase and rich phase diagram in the PdSe2-xTex system. Phys Rev B 2021;104(2):024507.

[63]

Tian J, Ivanovski VN, Szalda D, Lei H, Wang A, Liu Y, et al. Fe0.36(4)Pd0.64(4)Se2: magnetic spin-glass polymorph of FeSe2 and PdSe2 stable at ambient pressure. Inorg Chem 2019;58(5):3107-14.

[64]

Yan Y, Li S, Du J, Yang H, Wang X, Song X, et al. Reversible half wave rectifier based on 2D InSe/GeSe heterostructure with near-broken band alignment. Adv Sci 2021;8(4):1903252.

[65]

Gao A, Lai J, Wang Y, Zhu Z, Zeng J, Yu G, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol 2019;14(3):217-22.

[66]

Meng Y, Wang T, Jin C, Li Z, Miao S, Lian Z, et al. Electrical switching between exciton dissociation to exciton funneling in MoSe2/WS2 heterostructure. Nat Commun 2020;11(1):2640.

[67]

Liu J, Hao Q, Gan H, Li P, Li B, Tu Y, et al. Selectively modulated photoresponse in type-Ⅰ heterojunction for ultrasensitive self-powered photodetectors. Laser Photonics Rev; 2022, 2200338.

[68]

Hsu WT, Lu LS, Wu PH, Lee MH, Chen PJ, Wu PY, et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat Commun 2018;9(1):1356.

[69]

Lei S, Wang X, Li B, Kang J, He Y, George A, et al. Surface functionalization of two-dimensional metal chalcogenides by lewis acid-base chemistry. Nat Nanotechnol 2016;11(5):465-71.

[70]

Jang H, Seok Y, Choi Y, Cho SH, Watanabe K, Taniguchi T, et al. High-performance near-infrared photodetectors based on surface-doped InSe. Adv Funct Mater 2020;31(3):2006788.

[71]

Wang Y, Wang H, Gali SM, Turetta N, Yao Y, Wang C, et al. Molecular doping of 2D indium selenide for ultrahigh performance and low-power consumption broadband photodetectors. Adv Funct Mater 2021;31(30):2103353.

[72]

Ho PH, Chang YR, Chu YC, Li MK, Tsai CA, Wang WH, et al. High-mobility InSe transistors: the role of surface oxides. ACS Nano 2017;11(7):7362-70.

[73]

Gao Y, Liu X, Hu W, Yang J. Tunable n-type and p-type doping of two-dimensional layered PdSe2 via organic molecular adsorption. Phys Chem Chem Phys 2020;22(23):12973-9.

[74]

Withanage SS, Chamlagain B, Johnston AC, Khondaker SI. Charge transfer doping of 2D PdSe2 thin film and its application in fabrication of heterostructures. Adv Electron Mater 2021;7(3):2001057.

[75]

Yang X, Liu X, Qu L, Gao F, Xu Y, Cui M, et al. Boosting photoresponse of self-powered InSe-based photoelectrochemical photodetectors via suppression of interface doping. ACS Nano 2022;16(5):8440-8.

[76]

He Q, Lin Z, Ding M, Yin A, Halim U, Wang C, et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett 2019;19(10):6819-26.

[77]

Yankowitz M, Chen SW, Polshyn H, Zhang YX, Watanabe K, Taniguchi T, et al. Tuning superconductivity in twisted bilayer graphene. Science 2019;363(6431):1059-64.

[78]

Kang P. Indirect-to-direct bandgap transition in bilayer InSe: roles of twistronics. 2D Mater 2020;7(2):021002.

[79]

Long M, Wang P, Fang H, Hu W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater 2018;29(19):1803807.

[80]

Yao J, Yang G. 2D layered material alloys: synthesis and application in electronic and optoelectronic devices. Adv Sci 2021;9(1):2103036.

[81]

Ye J, Liao K, Ge X, Wang Z, Wang Y, Peng M, et al. Narrowing bandgap of HfS2 by Te substitution for short-wavelength infrared photodetection. Adv Opt Mater 2021;9(11):2002248.

[82]

Tan C, Amani M, Zhao C, Hettick M, Song X, Lien DH, et al. Evaporated SexTe1-x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv Mater 2020;32(38):2001329.

[83]

Zhao Q, Wang W, Carrascoso-Plana F, Jie W, Wang T, Castellanos-Gomez A, et al. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Mater Horiz 2020;7(1):252-62.

[84]

Liu Y, Shivananju BN, Wang Y, Zhang Y, Yu W, Xiao S, et al. Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl Mater Interfaces 2017;9(41):36137-45.

[85]

Dai M, Chen H, Feng R, Feng W, Hu Y, Yang H, et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS Nano 2018;12(8):8739-47.

[86]

Wu F, Xia H, Sun H, Zhang J, Gong F, Wang Z, et al. AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv Funct Mater 2019;29(12):1900314.

[87]

Long M, Wang Y, Wang P, Zhou X, Xia H, Luo C, et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019;13(2):2511-9.

[88]

Dong Z, Yu W, Zhang L, Mu H, Xie L, Li J, et al. Highly efficient, ultrabroad PdSe2 phototransistors from visible to terahertz driven by multiphysical mechanism. ACS Nano 2021;15(12):20403-13.

Journal of Materiomics
Pages 527-540
Cite this article:
Hao Q, Li P, Liu J, et al. Bandgap engineering of high mobility two-dimensional semiconductors toward optoelectronic devices. Journal of Materiomics, 2023, 9(3): 527-540. https://doi.org/10.1016/j.jmat.2022.11.009

185

Views

20

Crossref

17

Web of Science

20

Scopus

Altmetrics

Received: 04 October 2022
Revised: 21 November 2022
Accepted: 22 November 2022
Published: 16 December 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return