AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Two-dimensional optoelectronic devices for silicon photonic integration

Zilan TangShula ChenDong LiXiaoxia Wang( )Anlian Pan( )
Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

With the unprecedented increasing demand for extremely fast processing speed and huge data capacity, traditional silicon-based information technology is becoming saturated due to the encountered bottlenecks of Moore's Law. New material systems and new device architectures are considered promising strategies for this challenge. Two-dimensional (2D) materials are layered materials and garnered persistent attention in recent years owing to their advantages in ultrathin body, strong light-matter interaction, flexible integration, and ultrabroad operation wavelength range. To this end, the integration of 2D materials into silicon-based platforms opens a new path for silicon photonic integration. In this work, a comprehensive review is given of the recent signs of progress related to 2D material integrated optoelectronic devices and their potential applications in silicon photonics. Firstly, the basic optical properties of 2D materials and heterostructures are summarized in the first part. Then, the state-of-the-art three typical 2D optoelectronic devices for silicon photonic applications are reviewed in detail. Finally, the perspective and challenges for the aim of 3D monolithic heterogeneous integration of these 2D optoelectronic devices are discussed.

References

[1]

Hochberg M, Baehr-Jones T. Towards fabless silicon photonics. Nat Photonics 2010;4:492-4.

[2]

Asghari M, Krishnamoorthy AV. Energy-efficient communication. Nat Photonics 2011;5:268-70.

[3]

Miller DAB. Rationale and challenges for optical interconnects to electronic chips. Proc IEEE 2000;88:728-49.

[4]

Shacham A, Bergman K, Carloni LP. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput 2008;57:1246-60.

[5]

Vlasov YA. Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G. IEEE Commun Mag 2012;50:s67-72.

[6]
Ohashi K, Nishi K, Shimizu T, Nakada M, Fujikata J, Ushida J, et al. In A silicon photonics approach for the nanotechnology era. In: 2007 IEEE international electron devices meeting, 10-12 dec. 2007; 2007. p. 787-90.
[7]

Liu Y, Wang S, Wang J, Li X, Yu M, Cai Y. Silicon photonic transceivers in the field of optical communication. Nano Communication 2022;31:100379.

[8]

Hwang HY, Lee JS, Seok TJ, Forencich A, Grant HR, Knutson D, et al. Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre. IEEE Photonics J 2017;9:1-10.

[9]
Shastri BJ, Lima T F d, Huang C, Marquez BA, Shekhar S, Chrostowski L, et al. In silicon photonics for artificial intelligence and neuromorphic computing. In: 2021 IEEE photonics society summer topicals meeting series (SUM), 19-21 july 2021; 2021. p. 1-2.
[10]
Hoefflinger B, ITRS. The international technology Roadmap for semiconductors. In: Hoefflinger B, editor. Chips 2020: a guide to the future of nanoelectronics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 161-74.
[11]
Chiang SY. In Challenges of future silicon IC technology. In: Proceedings of 2011 international symposium on VLSI technology, systems and applications, 25-27 april 2011; 2011. p. 1. 1.
[12]
Chen T c. In Challenges for silicon technology scaling in the Nanoscale Era. In: 2009 proceedings of ESSCIRC, 14-18 sept. 2009; 2009. p. 1-7.
[13]

Theis TN, Wong HSP. The end of Moore's law: a new beginning for information technology. Comput Sci Eng 2017;19:41-50.

[14]

Peper F. The end of Moore's law: opportunities for natural computing? New Generat Comput 2017;35:253-69.

[15]

Zhou Z, Chen R, Li X, Li T. Development trends in silicon photonics for data centers. Opt Fiber Technol 2018;44:13-23.

[16]

Gonzalez-Zalba MF, de Franceschi S, Charbon E, Meunier T, Vinet M, Dzurak AS. Scaling silicon-based quantum computing using CMOS technology. Nat. Electron. 2021;4:872-84.

[17]

Akinwande D, Huyghebaert C, Wang C-H, Serna MI, Goossens S, Li LJ, et al. Graphene and two-dimensional materials for silicon technology. Nature 2019;573:507-18.

[18]

Tang Y, Mak KF. 2D materials for silicon photonics. Nat Nanotechnol 2017;12:1121-2.

[19]
Prasad SVS, Mishra RK, Gupta S, Prasad SB, Singh S. Introduction, history, and origin of two dimensional (2D) materials. In: Singh S, Verma K, Prakash C, editors. Advanced applications of 2D nanostructures: emerging research and opportunities. Singapore: Springer Singapore; 2021. p. 1-9.
[20]

Zhao Y, Gobbi M, Hueso LE, Samorì P. Molecular approach to engineer two-dimensional devices for CMOS and beyond-CMOS applications. Chem Rev 2022;122:50-131.

[21]

Duan X, Wang C, Pan A, Yu R, Duan X. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem Soc Rev 2015;44:8859-76.

[22]

Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nat Photonics 2014;8:899-907.

[23]

Jariwala D, Marks TJ, Hersam MC. Mixed-dimensional van der Waals heterostructures. Nat Mater 2017;16:170-81.

[24]

Liu Y, Weiss NO, Duan X, Cheng H-C, Huang Y, Duan X. Van der Waals heterostructures and devices. Nat Rev Mater 2016;1:16042.

[25]

Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 2016;10:216-26.

[26]

Wang J, Ma F, Sun M. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv 2017;7:16801-22.

[27]

Castellanos-Gomez A, Duan X, Fei Z, Gutierrez HR, Huang Y, Huang X, et al. Van der Waals heterostructures. Nat. Rev. Methods Primers 2022;2:58.

[28]

Schaibley JR, Yu H, Clark G, Rivera P, Ross JS, Seyler KL, et al. Valleytronics in 2D materials. Nat Rev Mater 2016;1:16055.

[29]

Liang SJ, Cheng B, Cui X, Miao F. Van der Waals heterostructures for high-performance device applications: challenges and opportunities. Adv Mater 2019:1903800.

[30]

You J, Luo Y, Yang J, Zhang J, Yin K, Wei K, et al. Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photon Rev 2020;14:2000239.

[31]

Liu C, Guo J, Yu L, Li J, Zhang M, Li H, et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light Sci Appl 2021:10.

[32]

An J, Zhao X, Zhang Y, Liu M, Yuan J, Sun X, et al. Perspectives of 2D materials for optoelectronic integration. Adv Funct Mater 2021:2110119.

[33]

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666-9.

[34]

Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007;6:183-91.

[35]

Romagnoli M, Sorianello V, Midrio M, Koppens FHL, Huyghebaert C, Neumaier D, et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat Rev Mater 2018;3:392-414.

[36]

Youngblood N, Li M. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics 2016;6:1205-18.

[37]

Liu J, Khan ZU, Wang C, Zhang H, Sarjoghian S. Review of graphene modulators from the low to the high figure of merits. J Phys D Appl Phys 2020;53:233002.

[38]

Zhong C, Li J, Lin H. Graphene-based all-optical modulators. Front Optoelectron 2020;13:114-28.

[39]

Yang T, Zheng B, Wang Z, Xu T, Pan C, Zou J, et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat Commun 2017;8:1906.

[40]

Wang J, Rousseau A, Yang M, Low T, Francoeur S, Kéna-Cohen S. Mid-infrared polarized emission from black phosphorus light-emitting diodes. Nano Lett 2020;20:3651-5.

[41]

Paik EY, Zhang L, Burg GW, Gogna R, Tutuc E, Deng H. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 2019;576:80-4.

[42]

Fang H, Liu J, Li H, Zhou L, Liu L, Li J, et al. 1305 nm few-layer MoTe2 -on-Silicon laser-like emission. Laser Photon Rev 2018;12:1800015.

[43]

Qiu CY, Yang YX, Li C, Wang YF, Wu K, Chen JP. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci Rep 2017;7.

[44]
Sarkar D. Chapter 9 - 2D materials for field-effect transistorebased biosensors. In: Hywel M, Rout CS, Late DJ, editors. Fundamentals and sensing applications of 2D materials. Woodhead Publishing; 2019. p. 329-377.
[45]

Das S, Sebastian A, Pop E, McClellan CJ, Franklin AD, Grasser T, et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021;4:786-99.

[46]

Ling X, Wang H, Huang S, Xia F, Dresselhaus MS. The renaissance of black phosphorus. Proc Natl Acad Sci USA 2015;112:4523-30.

[47]

Huang S, Ling X. Black phosphorus: optical characterization, properties and applications. Small 2017;13:1700823.

[48]

Xu Y, Shi Z, Shi X, Zhang K, Zhang H. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale 2019;11:14491-527.

[49]

Bao C, Zhou S. Black phosphorous for pseudospintronics. Nat Mater 2020;19:263-4.

[50]

Xu Y, Shi X, Zhang Y, Zhang H, Zhang Q, Huang Z, et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat Commun 2020;11:1330.

[51]

Cai Q, Scullion D, Gan W, Falin A, Zhang S, Watanabe K, et al. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci Adv 2019;5:eaav0129.

[52]

Elias C, Valvin P, Pelini T, Summerfield A, Mellor CJ, Cheng TS, et al. Direct band-gap crossover in epitaxial monolayer boron nitride. Nat Commun 2019;10:2639.

[53]

Cassabois G, Valvin P, Gil B. Intervalley scattering in hexagonal boron nitride. Phys Rev B 2016;93:035207.

[54]

Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 2010;5:722-6.

[55]

Duan X, Wang C, Shaw JC, Cheng R, Chen Y, Li H, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol 2014;9:1024-30.

[56]

Chen Y, Sun M. Two-dimensional WS2/MoS2 heterostructures: properties and applications. Nanoscale 2021;13:5594-619.

[57]

Geim AK, Grigorieva Ⅳ. Van der Waals heterostructures. Nature 2013;499:419-25.

[58]

Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater 2014;13:1135-42.

[59]

Wang X, Cheng Z, Xu K, Tsang HK, Xu J-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat Photonics 2013;7:888-91.

[60]

Hong X, Kim J, Shi S-F, Zhang Y, Jin C, Sun Y, et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nanotechnol 2014;9:682-6.

[61]

Constans L, Combrié S, Checoury X, Beaudoin G, Sagnes I, Raineri F, et al. Ⅲ–Ⅴ/Silicon hybrid non-linear nanophotonics in the context of on-chip optical signal processing and analog computing. Front Physiol 2019;7.

[62]

Froehlicher G, Lorchat E, Berciaud S. Direct versus indirect band gap emission and exciton-exciton annihilation in atomically thin molybdenum ditelluride (MoTe2). Phys Rev B 2016;94:085429.

[63]

Liu C-H, Clark G, Fryett T, Wu S, Zheng J, Hatami F, et al. Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode. Nano Lett 2017;17:200-5.

[64]

Reed JC, Zhu AY, Zhu H, Yi F, Cubukcu E. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett 2015;15:1967-71.

[65]

Liu Y, Fang H, Rasmita A, Zhou Y, Li J, Yu T, et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci Adv 2019;5:eaav4506.

[66]

Wu S, Buckley S, Schaibley JR, Feng L, Yan J, Mandrus DG, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015;520:69-72.

[67]

Zhang Y, Wang S, Chen S, Zhang Q, Wang X, Zhu X, et al. Wavelength-tunable mid-infrared lasing from black phosphorus nanosheets. Adv Mater 2020;32:e1808319.

[68]

Aoki K, Guimard D, Nishioka M, Nomura M, Iwamoto S, Arakawa Y. Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nat Photonics 2008;2:688-92.

[69]

Li Y, Zhang J, Huang D, Sun H, Fan F, Feng J, et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat Nanotechnol 2017;12:987-92.

[70]

Li L, Zheng W, Ma C, Zhao H, Jiang F, Ouyang Y, et al. Wavelength-tunable interlayer exciton emission at the near-infrared region in van der Waals semiconductor heterostructures. Nano Lett 2020;20:3361-8.

[71]

Zheng W, Zheng B, Yan C, Liu Y, Sun X, Qi Z, et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv Sci (Weinh) 2019;6:1802204.

[72]

Li F, Feng Y, Li Z, Ma C, Qu J, Wu X, et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv Mater 2019;31:e1901351.

[73]

Zhang Y, Wang S, Chen S, Zhang Q, Wang X, Zhu X, et al. Wavelength-tunable mid-infrared lasing from black phosphorus nanosheets. Adv Mater 2020;32:1808319.

[74]

Gevaux D. Disks set to shine. Nat Photonics 2006.

[75]

Gérard JM. Boosting photon storage. Nat Mater 2003;2:140-1.

[76]

Srinivasan K. An out-of-plane experience. Nat Photonics 2009;3:15-6.

[77]

Mahler L, Tredicucci A, Beltram F, Walther C, Faist J, Witzigmann B, et al. Vertically emitting microdisk lasers. Nat Photonics 2009;3:46-9.

[78]

Ye Y, Wong ZJ, Lu X, Ni X, Zhu H, Chen X, et al. Monolayer excitonic laser. Nat Photonics 2015;9:733-7.

[79]

Lien DH, Amani M, Desai SB, Ahn GH, Han K, He JH, et al. Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nat Commun 2018;9.

[80]

Cho J, Amani M, Lien DH, Kim H, Yeh M, Wang V, et al. Centimeter-scale and visible wavelength monolayer light-emitting devices. Adv Funct Mater 2019;30:1907941.

[81]

Feng J, Li Y, Zhang J, Tang Y, Sun H, Gan L, et al. Injection-free multiwavelength electroluminescence devices based on monolayer semiconductors driven by an alternating field. Sci Adv 2022;8:eabl5134.

[82]

Ross JS, Klement P, Jones AM, Ghimire NJ, Yan J, Mandrus DG, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat Nanotechnol 2014;9:268-72.

[83]

Bie YQ, Grosso G, Heuck M, Furchi MM, Cao Y, Zheng J, et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat Nanotechnol 2017;12:1124-9.

[84]

Lien D-H, Amani M, Desai SB, Ahn GH, Han K, He JH, et al. Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nat Commun 2018;9:1229.

[85]

Yang X, Wu R, Zheng B, Luo Z, You W, Liu H, et al. A waveguide-integrated two-dimensional light-emitting diode based on p-type WSe2/n-Type CdS nanoribbon heterojunction. ACS Nano 2022;16:4371-8.

[86]

Shang J, Cong C, Wang Z, Peimyoo N, Wu L, Zou C, et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat Commun 2017;8:543.

[87]

Duong NMH, Xu Z-Q, Kianinia M, Su R, Liu Z, Kim S, et al. Enhanced emission from WSe2 monolayers coupled to circular Bragg gratings. ACS Photonics 2018;5:3950-5.

[88]

Fang H, Liu J, Li H, Zhou L, Liu L, Li J, et al. 1305 nm few-layer MoTe2 -on-Silicon laser-like emission. Laser Photon Rev 2018;12.

[89]

Zhao L, Shang Q, Gao Y, Shi J, Liu Z, Chen J, et al. High-temperature continuous-wave pumped lasing from large-area monolayer semiconductors grown by chemical vapor deposition. ACS Nano 2018;12:9390-6.

[90]

Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nat Photonics 2016;10:227-38.

[91]

Winn JN, Rusin D, Kochanek CS. The central image of a gravitationally lensed quasar. Nature 2004;427:613-5.

[92]

Liao L, Samara-Rubio D, Morse M, Liu A, Hodge D, Rubin D, et al. High speed silicon Mach-Zehnder modulator. Opt Express 2005;13:3129-35.

[93]

Long Y, Wang Y, Hu X, Ji M, Shen L, Wang A, et al. Channel-selective wavelength conversion of quadrature amplitude modulation signal using a graphene-assisted silicon microring resonator. Opt Lett 2017;42:799-802.

[94]

Sinatkas G, Christopoulos T, Tsilipakos O, Kriezis EE. Comparative study of silicon photonic modulators based on transparent conducting Oxide and graphene. Phys. Rev. Appl. 2019;12:064023.

[95]

Yamane T, Nagai N, Katayama S-I, Todoki M. Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. J Appl Phys 2002;91:9772-6.

[96]

Yu L, Dai D, He S. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Appl Phys Lett 2014;105:251104.

[97]

Gan S, Cheng C, Zhan Y, Huang B, Gan X, Li S, et al. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale 2015;7:20249-55.

[98]

Zulfiqar M, Zhao Y, Li G, Li Z, Ni J. Intrinsic Thermal conductivities of monolayer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te). Sci Rep 2019;9:4571.

[99]

Singh D, Murthy JY, Fisher TS. On the accuracy of classical and long wavelength approximations for phonon transport in graphene. J Appl Phys 2011;110:113510.

[100]

Yu L, Yin Y, Shi Y, Dai D, He S. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica 2016;3:159.

[101]

Xu Z, Qiu C, Yang Y, Zhu Q, Jiang X, Zhang Y, et al. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Opt Express 2017;25:19479-86.

[102]

Yan S, Zhu X, Frandsen LH, Xiao S, Mortensen NA, Dong J, et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat Commun 2017;8:14411.

[103]

Wei K, Li D, Lin Z, Cheng Z, Yao Y, Guo J, et al. All-optical PtSe2 silicon photonic modulator with ultra-high stability. Photon Res 2020;8:1189.

[104]

Qiu C, Zhang C, Zeng H, Guo T. High-performance graphene-on-silicon nitride all-optical switch based on a mach–zehnder interferometer. J Lightwave Technol 2021;39:2099-105.

[105]

Apell SP, Hanson GW, Hägglund C. High optical absorption in graphene. arXivLabs 2012;1201:3071.

[106]

Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, et al. Gate-variable optical transitions in graphene. Science 2008;320:206-9.

[107]

Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, et al. A graphene-based broadband optical modulator. Nature 2011;474:64-7.

[108]

Qiu C, Gao W, Vajtai R, Ajayan PM, Kono J, Xu Q. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett 2014;14:6811-5.

[109]

Ding Y, Zhu X, Xiao S, Hu H, Frandsen LH, Mortensen NA, et al. Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator. Nano Lett 2015;15:4393-400.

[110]

Phare CT, Daniel Lee Y-H, Cardenas J, Lipson M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat Photonics 2015;9:511-4.

[111]

Bagheri S, Mansouri N, Aghaie E. Phosphorene: a new competitor for graphene. Int J Hydrogen Energy 2016;41:4085-95.

[112]

Xia F, Wang H, Hwang JCM, Neto AHC, Yang L. Black phosphorus and its isoelectronic materials. Nat. Rev. Phys. 2019;1:306-17.

[113]

Sorianello V, Midrio M, Contestabile G, Asselberghs I, Van Campenhout J, Huyghebaert C, et al. Graphene–silicon phase modulators with gigahertz bandwidth. Nat Photonics 2018;12:40-4.

[114]

Datta I, Chae SH, Bhatt GR, Tadayon MA, Li B, Yu Y, et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat Photonics 2020;14:256-62.

[115]

Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics 2020;14:37-43.

[116]

Basiri A, Rafique MZE, Bai J, Choi S, Yao Y. Ultrafast low-pump fluence all-optical modulation based on graphene-metal hybrid metasurfaces. Light Sci Appl 2022;11:102.

[117]

Ooi KJA, Leong PC, Ang LK, Tan DTH. All-optical control on a graphene-on-silicon waveguide modulator. Sci Rep 2017;7:12748.

[118]

Marini A, Cox JD, García de Abajo FJ. Theory of graphene saturable absorption. Phys Rev B 2017;95.

[119]

Xing G, Guo H, Zhang X, Sum TC, Huan CHA. The physics of ultrafast saturable absorption in graphene. Opt Express 2010;18:4564-73.

[120]

Yu L, Zheng J, Xu Y, Dai D, He S. Local and nonlocal optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits. ACS Nano 2014;8:11386-93.

[121]

Wang H, Yang N, Chang L, Zhou C, Li S, Deng M, et al. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photon Res 2020;8:468.

[122]

AlAloul M, Rasras M. Low insertion loss plasmon-enhanced graphene all-optical modulator. ACS Omega 2021;6:7576-84.

[123]

Klein M, Badada BH, Binder R, Alfrey A, McKie M, Koehler MR, et al. 2D semiconductor nonlinear plasmonic modulators. Nat Commun 2019;10:3264.

[124]

Yang S, Liu DC, Tan ZL, Liu K, Zhu ZH, Qin SQ. CMOS-compatible WS2-based all-optical modulator. ACS Photonics 2018;5:342-6.

[125]

Sun F, Nie C, Wei X, Mao H, Zhang Y, Wang GP. All-optical modulation based on MoS2-Plasmonic nanoslit hybrid structures. Nanophotonics 2021;10:3957-65.

[126]

Qiu C, Yang Y, Li C, Wang Y, Wu K, Chen J. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci Rep 2017;7:17046.

[127]

Deng S, Sumant AV, Berry V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 2018;22:14-35.

[128]

Chen X, Shehzad K, Gao L, Long M, Guo H, Qin S, et al. Graphene hybrid structures for integrated and flexible optoelectronics. Adv Mater 2020;32:1902039.

[129]

Li J, Liu C, Chen H, Guo J, Zhang M, Dai D. Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics 2020;9:2295-314.

[130]

Cao G, Wang F, Peng M, Shao X, Yang B, Hu W, et al. Multicolor broadband and fast photodetector based on InGaAs–insulator–graphene hybrid heterostructure. Adv. Electron. Mater. 2020;6:1901007.

[131]

Yang W, Chen J, Zhang Y, Zhang Y, He JH, Fang X. Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology. Adv Funct Mater 2019;29.

[132]

Sun H, Jiang T, Zang Y, Zheng X, Gong Y, Yan Y, et al. Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures. Nanoscale 2017;9:9325-32.

[133]

Jiang T, Zang Y, Sun H, Zheng X, Liu Y, Gong Y, et al. Broadband high-responsivity photodetectors based on large-scale topological crystalline insulator SnTe ultrathin film grown by molecular beam epitaxy. Adv Opt Mater 2017;5:1600727.

[134]

Fang Y, Ge Y, Wang C, Zhang H. Mid-infrared photonics using 2D materials: status and challenges. Laser Photon Rev 2020;14:1900098.

[135]

Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 2014;9:780-93.

[136]

Zhu W, Low T, Lee Y-H, Wang H, Farmer DB, Kong J, et al. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat Commun 2014;5:3087.

[137]

Furchi MM, Polyushkin DK, Pospischil A, Mueller T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett 2014;14:6165-70.

[138]

Vu QA, Lee JH, Nguyen VL, Shin YS, Lim SC, Lee K, et al. Tuning carrier tunneling in van der Waals heterostructures for ultrahigh detectivity. Nano Lett 2017;17:453-9.

[139]

Ma Q, Andersen TI, Nair NL, Gabor NM, Massicotte M, Lui Chun H, et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat Phys 2016;12:455-9.

[140]

Vicarelli L, Vitiello MS, Coquillat D, Lombardo A, Ferrari AC, Knap W, et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat Mater 2012;11:865-71.

[141]

Long M, Wang P, Fang H, Hu W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater 2019;29:1803807.

[142]

Wu J, Ma H, Yin P, Ge Y, Zhang Y, Li L, et al. Two-dimensional materials for integrated photonics: recent advances and future challenges. Small Sci 2021;1:2000053.

[143]

Liu C, Guo J, Yu L, Li J, Zhang M, Li H, et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light Sci Appl 2021;10:123.

[144]

An J, Zhao X, Zhang Y, Liu M, Yuan J, Sun X, et al. Perspectives of 2D materials for optoelectronic integration. Adv Funct Mater 2022;32:2110119.

[145]

Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and optoelectronics. Nat Photonics 2010;4:611-22.

[146]

Bao Q, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012;6:3677-94.

[147]

Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nat Photonics 2010;4:297-301.

[148]

Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 2008;100:016602.

[149]

Sun D, Aivazian G, Jones AM, Ross JS, Yao W, Cobden D, et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat Nanotechnol 2012;7:114-8.

[150]

Sugihara K, Kawamuma K, Tsuzuku T. Temperature dependence of the average mobility in graphite. J Phys Soc Jpn 1979;47:1210-5.

[151]

Freitag M, Low T, Xia F, Avouris P. Photoconductivity of biased graphene. Nat Photonics 2013;7:53-9.

[152]

Urich A, Unterrainer K, Mueller T. Intrinsic response time of graphene photodetectors. Nano Lett 2011;11:2804-8.

[153]

Bistritzer R, MacDonald AH. Electronic cooling in graphene. Phys Rev Lett 2009;102:206410.

[154]

Lee EJH, Balasubramanian K, Weitz RT, Burghard M, Kern K. Contact and edge effects in graphene devices. Nat Nanotechnol 2008;3:486-90.

[155]

Berger C, Song Z, Li X, Wu X, Brown N, Naud C, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006;312:1191-6.

[156]

Tian R, Gan X, Li C, Chen X, Hu S, Gu L, et al. Chip-integrated van der Waals PN heterojunction photodetector with low dark current and high responsivity. Light Sci Appl 2022;11:101.

[157]

Youngblood N, Chen C, Koester SJ, Li M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat Photonics 2015;9:247-52.

[158]

Schuler S, Muench JE, Ruocco A, Balci O, Thourhout D v, Sorianello V, et al. High-responsivity graphene photodetectors integrated on silicon microring resonators. Nat Commun 2021;12:3733.

[159]

Gan X, Shiue R-J, Gao Y, Meric I, Heinz TF, Shepard K, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics 2013;7:883-7.

[160]

Yin Y, Cao R, Guo J, Liu C, Li J, Feng X, et al. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm. Laser Photon. Rev 2019;13:1900032.

[161]

Zhang C, Johnson A, Hsu C-L, Li L-J, Shih C-K. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett 2014;14:2443-7.

[162]

Ugeda MM, Bradley AJ, Shi S-F, da Jornada FH, Zhang Y, Qiu DY, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 2014;13:1091-5.

[163]

Liu G-B, Shan W-Y, Yao Y, Yao W, Xiao D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys Rev B 2013;88:085433.

[164]

He K, Kumar N, Zhao L, Wang Z, Mak KF, Zhao H, et al. Tightly bound excitons in monolayer WSe2. Phys Rev Lett 2014;113:026803.

[165]

Berkelbach TC, Hybertsen MS, Reichman DR. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys Rev B 2013;88:045318.

[166]

Yu WJ, Liu Y, Zhou H, Yin A, Li Z, Huang Y, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol 2013;8:952-8.

[167]

Pospischil A, Furchi MM, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat Nanotechnol 2014;9:257-61.

[168]

Baugher BWH, Churchill HOH, Yang Y, Jarillo-Herrero P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat Nanotechnol 2014;9:262-7.

[169]

Tsai D-S, Liu K-K, Lien D-H, Tsai M-L, Kang C-F, Lin C-A, et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013;7:3905-11.

[170]

Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 2013;8:497-501.

[171]

Lee C-H, Lee G-H, van der Zande AM, Chen W, Li Y, Han M, et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat Nanotechnol 2014;9:676-81.

[172]

Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney AP, Gholinia A, Watanabe K, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater 2015;14:301-6.

[173]

Lee HS, Min S-W, Chang YG, Park MK, Nam T, Kim H, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 2012;12:3695-700.

[174]

Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013;340:1311-4.

[175]

Chen X, Lu X, Deng B, Sinai O, Shao Y, Li C, et al. Widely tunable black phosphorus mid-infrared photodetector. Nat Commun 2017;8:1672.

[176]

Chaves A, Azadani JG, Alsalman H, da Costa DR, Frisenda R, Chaves AJ, et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 2020;4:29.

[177]

Flory N, Ma P, Salamin Y, Emboras A, Taniguchi T, Watanabe K, et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat Nanotechnol 2020;15:118-24.

[178]

Maiti R, Patil C, Saadi MASR, Xie T, Azadani JG, Uluutku B, et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat Photonics 2020;14:578-84.

[179]

Wu J, Wei M, Mu J, Ma H, Zhong C, Ye Y, et al. High-performance waveguide-integrated Bi2O2Se photodetector for Si photonic integrated circuits. ACS Nano 2021;15:15982-91.

[180]

Wu J, Ma H, Zhong C, Wei M, Sun C, Ye Y, et al. Waveguide-integrated PdSe2 photodetector over a broad infrared wavelength range. Nano Lett 2022;22:6816-24.

[181]

Zhou AF, Aldalbahi A, Feng P. Vertical metal-semiconductor-metal deep UV photodetectors based on hexagonal boron nitride nanosheets prepared by laser plasma deposition. Opt Mater Express 2016;6.

[182]

Kaushik S, Sorifi S, Singh R. Study of temperature dependent behavior of h-BN nanoflakes based deep UV photodetector. Photonics Nanostruct. Fundam. Appl. 2021:43.

[183]

Rivera M, Velazquez R, Aldalbahi A, Zhou AF, Feng P. High operating temperature and low power consumption boron nitride nanosheets based broadband UV photodetector. Sci Rep 2017;7:42973.

[184]

Gao M, Meng J, Chen Y, Ye S, Wang Y, Ding C, et al. Catalyst-free growth of two-dimensional hexagonal boron nitride few-layers on sapphire for deep ultraviolet photodetectors. J Mater Chem C 2019;7:14999-5006.

[185]

Liu H, Meng J, Zhang X, Chen Y, Yin Z, Wang D, et al. High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale 2018;10:5559-65.

[186]

Zheng W, Lin R, Zhang Z, Huang F. Vacuum-ultraviolet photodetection in few-layered h-BN. ACS Appl Mater Interfaces 2018;10:27116-23.

[187]

Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR. Large-scale nanophotonic phased array. Nature 2013;493:195-9.

[188]

Balci O, Polat EO, Kakenov N, Kocabas C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat Commun 2015;6:6628.

[189]

Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett 2014;14:6414-7.

[190]

Lien M-B, Liu C-H, Chun IY, Ravishankar S, Nien H, Zhou M, et al. Ranging and light field imaging with transparent photodetectors. Nat Photonics 2020;14:143-8.

[191]

Mennel L, Symonowicz J, Wachter S, Polyushkin DK, Molina-Mendoza AJ, Mueller T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020;579:62-6.

[192]

Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras JJ, Pérez R, et al. Broadband image sensor array based on graphene–CMOS integration. Nat Photonics 2017;11:366-71.

[193]

Choi C, Leem J, Kim M, Taqieddin A, Cho C, Cho KW, et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat Commun 2020;11:5934.

[194]

Soref R. Enabling 2 μm communications. Nat Photonics 2015;9:358-9.

[195]

Rahim A, Spuesens T, Baets R, Bogaerts W. Open-access silicon photonics: current status and emerging initiatives. Proc IEEE 2018;106:2313-30.

[196]

Wang J, Sciarrino F, Laing A, Thompson MG. Integrated photonic quantum technologies. Nat Photonics 2019;14:273-84.

[197]

Tian R, Gan X, Li C, Chen X, Hu S, Gu L, et al. Chip-integrated van der Waals PN heterojunction photodetector with low dark current and high responsivity. Light Sci Appl 2022;11:101.

[198]

Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. 2D materials and van der Waals heterostructures. Science 2016;353:aac9439.

[199]

Wang H, Liu F, Fu W, Fang Z, Zhou W, Liu Z. Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale 2014;6:12250-72.

[200]

Li H, Wang X, Zhu X, Duan X, Pan A. Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. Chem Soc Rev 2018;47:7504-21.

[201]

Xu X, Guo T, Kim H, Hota MK, Alsaadi RS, Lanza M, et al. Growth of 2D materials at the wafer scale. Adv Mater 2022;34:2108258.

[202]

Li T, Guo W, Ma L, Li W, Yu Z, Han Z, et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat Nanotechnol 2021;16:1201-7.

[203]

Li J, Chen M, Samad A, Dong H, Ray A, Zhang J, et al. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat Mater 2022;21:740-7.

[204]

Gao X, Zheng L, Luo F, Qian J, Wang J, Yan M, et al. Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation. Nat Commun 2022;13:5410.

[205]

Li J, Wang S, Li L, Wei Z, Wang Q, Sun H, et al. Chemical vapor deposition of 4 inch wafer-scale monolayer MoSe2. Small Sci 2022;13:2200062.

[206]

Kleinert M, Herziger F, Reinke P, Zawadzki C, de Felipe D, Brinker W, et al. Graphene-based electro-absorption modulator integrated in a passive polymer waveguide platform. Opt Mater Express 2016;6:1800-7.

[207]

Colombo L, Wallace RM, Ruoff RS. Graphene growth and device integration. Proc IEEE 2013;101:1536-56.

[208]

Pan A, Zhang K, Liu X, Qiu CW. Focus on 2D material nanophotonics. Nanotechnology 2019;30:030201.

[209]

Chang K, Li Z, Gu Y, Liu K, Chen K. Graphene-integrated waveguides: properties, preparation, and applications. Nano Res 2022;15:9704-26.

[210]

Cheng Z, Cao R, Wei K, Yao Y, Liu X, Kang J, et al. 2D materials enabled next-generation integrated optoelectronics: from fabrication to applications. Adv Sci 2021;8:2003834.

[211]

Ren H, Maier SA. Nanophotonic materials for twisted light manipulation. Adv Mater 2021:e2106692.

[212]

Ren H, Wang X, Li C, He C, Wang Y, Pan A, et al. Orbital-angular-momentum-controlled hybrid nanowire circuit. Nano Lett 2021;21:6220-7.

[213]

Quereda J, Hidding J, Ghiasi TS, van Wees BJ, van der Wal CH, Guimarães MHD. The role of device asymmetries and Schottky barriers on the helicity-dependent photoresponse of 2D phototransistors. npj 2D Mater. Apple 2021;5:13.

[214]

Huang P, Chen X, Zhang P, Sun H, Xu S, Xiong W, et al. Crystalline chirality and interlocked double hourglass Weyl fermion in polyhedra-intercalated transition metal dichalcogenides. NPG Asia Mater 2021;13:49.

[215]

Kurpas M, Gmitra M, Fabian J. Spin properties of black phosphorus and phosphorene, and their prospects for spincalorics. J Phys D Appl Phys 2018;51:174001.

[216]

Rivera P, Seyler KL, Yu H, Schaibley JR, Yan J, Mandrus DG, et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016;351:688-91.

[217]

Zhang T, Xu X, Huang B, Dai Y, Ma Y. 2D spontaneous valley polarization from inversion symmetric single-layer lattices. npj Comput. Mater. 2022;8:64.

[218]

Hu T, Zhong Q, Li N, Dong Y, Xu Z, Fu YH, et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics 2020;9:823-30.

[219]

Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics 2019;14:37-43.

[220]

Sun F, Xia L, Nie C, Qiu C, Tang L, Shen J, et al. An all-optical modulator based on a graphene–plasmonic slot waveguide at 1550 nm. APEX 2019;12:042009.

[221]

Huang L, Fan G, Zhu Y, Wang M, Cai X, Wei J, et al. Monolayer WS2 based electro-absorption modulator. Opt Mater 2021;113:110851.

[222]

Zhang H, Ma P, Zhu M, Zhang W, Wang G, Fu S. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics 2020;9:2557-67.

[223]

Yao Y, Cheng Z, Dong J, Zhang X. Performance of integrated optical switches based on 2D materials and beyond. Front Optoelectron 2020;13:129-38.

[224]

Liu Y, Zhang J, Peng L-M. Three-dimensional integration of plasmonics and nanoelectronics. Nat. Electron. 2018;1:644-51.

[225]

Zhu K, Wen C, Aljarb AA, Xue F, Xu X, Tung V, et al. The development of integrated circuits based on two-dimensional materials. Nat. Electron. 2021;4:775-85.

[226]

Lin J, Mueller JP, Wang Q, Yuan G, Antoniou N, Yuan XC, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 2013;340:331-4.

[227]

Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006;440:508-11.

[228]

Davis TJ, Gómez DE, Roberts A. Plasmonic circuits for manipulating optical information. Nanophotonics 2016;6:543-59.

[229]

Meng Y, Chen Y, Lu L, Ding Y, Cusano A, Fan JA, et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci Appl 2021:10.

[230]

Yu N, Genevet P, Kats MA, Aieta F, Tetienne J-P, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333-7.

[231]

Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma ML, Hasman E. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 2016;352:1202-6.

Journal of Materiomics
Pages 551-567
Cite this article:
Tang Z, Chen S, Li D, et al. Two-dimensional optoelectronic devices for silicon photonic integration. Journal of Materiomics, 2023, 9(3): 551-567. https://doi.org/10.1016/j.jmat.2022.11.007

251

Views

21

Crossref

22

Web of Science

24

Scopus

Altmetrics

Received: 29 September 2022
Revised: 10 November 2022
Accepted: 14 November 2022
Published: 14 December 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return