AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

High energy density and superior charge/discharge efficiency polymer dielectrics enabled by rationally designed dipolar polarization

Zizhao Pana,1,bYupeng Panc,1Li Lia,bXinwei Xua,bJiufeng Donga,bFei Jina,bLiang Suna,bYujuan Niua,bChen Xuc( )Hong Wanga,b( )
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China

1 Zizhao Pan and Yupeng Pan contributed equally to this work.

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Although many dielectric polymers exhibit high energy storage density (Ue) with enhanced dipolar polarization at room temperature, the substantially increased electric conduction loss at high applied electric fields and high temperatures remains a great challenge. Here, we report a strategy that high contents of medium-polar ester group and end-group (St) modification are introduced into a biodegradable polymer polylactic acid (PLA) to synergistically reduce the loss and enhance Ue and charge-discharge efficiency (η). The resultant St-modified PLA polymer (PLA-St) exhibits an Ue of 6.5 J/cm3 with an ultra-high η (95.4%), far outperforming the best reported dielectric polymers. It is worth noting that the modified molecular structures can generate deep trap centers and restrict the local dipole motions in the polymer, which are responsible for the reduction of conduction loss and improvements in high-temperature capacitive performance. In addition, the PLA-St polymer shows intrinsically excellent self-healing ability and cyclic stability surviving over 500 000 charge-discharge cycles. This work offers an efficient route to next-generation eco-friendly dielectric polymers with high energy density, low loss, and long-term stability.

References

[1]

Li Q, Chen L, Gadinski MR, Zhang S, Zhang G, Li HU, Iagodkine E, Haque A, Chen LQ, Jackson TN, Wang Q. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015;523:576-9.

[2]

Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006;313:334-6.

[3]

Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 2015;27:6658-63.

[4]

Shen Z, Shen Y, Cheng X, Liu H, Chen L, Nan C. High-throughput data-driven interface design of high-energy-density polymer nanocomposites. J. Materiomics 2020;6:573-81.

[5]

Xu X, Liu W, Li Y, Wang Y, Yuan Q, Chen J, Ma R, Xiang F, Wang H. Flexible mica films for high-temperature energy storage. J. Materiomics 2018;4:173-8.

[6]

Dong J, Hu R, Xu X, Chen J, Niu Y, Wang F, Hao J, Wu K, Wang Q, Wang H. A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance. Adv Funct Mater 2021;31:2102644.

[7]

Yuan C, Zhou Y, Zhu Y, Liang J, Wang S, Peng S, Li Y, Cheng S, Yang M, Hu J, Zhang B, Zeng R, He J, Li Q. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat Commun 2020;11:3919.

[8]

Luo B, Shen Z, Cai Z, Tian E, Yao Y, Li B, Kursumovic A, MacManus-Driscoll JL, Li L, Chen L-Q, Wang X. Superhierarchical inorganic/organic nanocomposites exhibiting simultaneous ultrahigh dielectric energy density and high efficiency. Adv Funct Mater 2021;31:2007994.

[9]
J. Pei, S. Zhong, Y. Zhao, L. Yin, Q. Feng, L. Huang, D. Liu, Y. Zhang, Z. Dang, Allorganic dielectric polymer films exhibiting superior electric breakdown strength and discharged energy density by adjusting the electrodeedielectric interface with an organic nano-interlayer, Energy Environ Sci 14 (2021), 5513- 5522.
[10]
Q. Feng, D. Liu, Y. Zhang, J. Pei, S. Zhong, H. Hu, X. Wang, Z. Dang, Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges, Nano Energy 99 (2022), 107410.
[11]

Feng M, Feng Y, Zhang T, Li J, Chen Q, Chi Q, Lei Q. Recent advances in multilayer-structure dielectrics for energy storage application. Adv Sci 2021;8:2102221.

[12]

Wu C, Deshmukh AA, Li Z, Chen L, Alamri A, Wang Y, Ramprasad R, Sotzing GA, Cao Y. Flexible temperature-invariant polymer dielectrics with large bandgap. Adv. Mater. 2020;32:2000499.

[13]

Tang Y, Xu W, Niu S, Zhang Z, Zhang Y, Jiang Z. Crosslinked dielectric materials for high-temperature capacitive energy storage. J Mater Chem 2021;9:10000.

[14]

Liu J, Shen Z, Xu W, Zhang Y, Qian X, Jiang Z, Zhang Y. Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network. Small 2020;16:2000714.

[15]

Zhou Y, Wang Q. Advanced polymer dielectrics for high temperature capacitive energy storage. J Appl Phys 2020;127:240902.

[16]

Li Z, Treich Gregory M, Tefferi M, Wu C, Nasreen S, Scheirey SK, Ramprasad R, Sotzing GA, Cao Y. High energy density and high efficiency all-organic polymers with enhanced dipolar polarization. J Mater Chem 2019;7:15026.

[17]

Zhang Q, Chen X, Zhang B, Zhang T, Lu W, Chen Z, Liu Z, Kim SH, Donovan B, Warzoha RJ, Gomez ED, Bernholc J, Zhang QM. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter 2021;4:1-12.

[18]
Q. Feng, S. Zhong, J. Pei, Y. Zhao, D. Zhang, D. Liu, Y. Zhang, Z. Dang, Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors, Chem. Rev. 122 (2022), 3820-3878.
[19]

Chung TCM. Expanding polyethylene and polypropylene applications to high-energy areas by applying polyolefin-bonded antioxidants. Macromolecules 2019;52:5618-37.

[20]

Li Q, Tan S, Gong H, Lu J, Zhang W, Zhang X, Zhang Z. Influence of dipole and intermolecular interaction on the tuning dielectric and energy storage properties of polystyrene-based polymers. Phys Chem Chem Phys 2021;23:3856.

[21]

Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 2018;30:1805672.

[22]

Zhang T, Chen X, Thakur Y, Lu B, Zhang Q, Runt J, Zhang QM. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci Adv 2020;6:eaax6622.

[23]

Li H, Zhou Y, Liu Y, Li L, Liu Y, Wang Q. Dielectric polymers for high-temperature capacitive energy storage. Chem Soc Rev 2021;50:6369-6400.

[24]

Zhang Z, Wang DH, Litt MH, Tan L-S, Zhu L. High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide). Angew Chem Int Ed 2018;57:1528.

[25]

Wei J, Zhang Z, Tseng J-K, Treufeld I, Liu X, Litt MH, Zhu L. Achieving high dielectric constant and low loss property in a dipolar glass polymer containing strongly dipolar and small-sized sulfone groups. ACS Appl Mater Interfaces 2015;7:5248-57.

[26]

Zhang Z, Zheng J, Premasiri K, Kwok M-H, Li Q, Li R, Zhang S, Litt MH, Gao XPA, Zhu L. High-κ polymers of intrinsic microporosity: a new class of high temperature and low loss dielectrics for printed electronics. Mater Horiz 2020;7:592-7.

[27]

Tasaka S, Inagaki N, Miyata S, Chiba T. Electrical properties of cyanoethylated polysaccharides. Sen'i Gakkaishi 1988;44:546-50.

[28]

Kinpara S, Tasaka S, Inagaki N. Molecular motion and dielectricity in polymers with cyanoethyl group. Sen'i Gakkaishi 1993;49:6-11.

[29]

Wu S, Li W, Lin M, Burlingame Q, Chen Q, Payzant A, Xiao K, Zhang QM. Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density. Adv. Mater. 2013;25:1734-8.

[30]

Burlingame Q, Wu S, Lin M, Zhang QM. Conduction mechanisms and structure–property relationships in high energy density aromatic polythiourea dielectric films. Adv Energy Mater 2013;3:1051-5.

[31]

Degée P, Dubois P, Jérǒme R, Jacobsen S, Fritz H-G. New catalysis for fast bulk ring-opening polymerization of lactide monomers. Macromol Symp 1999;144:289-302.

[32]

Lee JU, Jung JW, Emrick T, Russell TP, Jo WH. Synthesis of C60-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. J Mater Chem 2010;20:3287-94.

[33]

Ikada Y, Jamshidi K, Tsuji H, Hyon SH. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 1987;20:904-6.

[34]

Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stabil 1998;59:145.

[35]

Ovitt TM, Coates GW. Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms. J Am Chem Soc 2002;124:1316-26.

[36]

Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW. Polymerization of lactide with zinc and magnesium β-diiminate complexes: stereocontrol and mechanism. J Am Chem Soc 2001;123:3229-38.

[37]

Myers D, White AJP, Forsyth CM, Bown M, Williams CK. Phosphasalen indium complexes showing high rates and isoselectivities in rac-lactide polymerizations. Angew Chem Int Ed 2017;56:5277-82.

[38]

Tang Z, Chen X, Pang X, Yang Y, Zhang X, Jing X. Stereoselective polymerization of rac-lactide using a monoethylaluminum schiff base complex. Biomacromolecules 2004;5:965-70.

[39]

Reed CW, Cichanowskil SW. The fundamentals of aging in HV polymer-film capacitors. IEEE Trans Dielectr Electr Insul 1994;1:904-22.

[40]

Chen S, Meng G, Kong B, Xiao B, Wang Z, Jing Z, Gao Y, Wu G, Wang H, Cheng Y. Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chem. Eng. J. 2020;387:123662.

[41]

Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Adv. Mater. 2000;12:1841-6.

Journal of Materiomics
Pages 601-608
Cite this article:
Pan Z, Pan Y, Li L, et al. High energy density and superior charge/discharge efficiency polymer dielectrics enabled by rationally designed dipolar polarization. Journal of Materiomics, 2023, 9(3): 601-608. https://doi.org/10.1016/j.jmat.2022.11.002

241

Views

16

Crossref

14

Web of Science

16

Scopus

Altmetrics

Received: 17 August 2022
Revised: 21 October 2022
Accepted: 05 November 2022
Published: 01 December 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return