Journal Home > Volume 8 , Issue 4

For glass-ceramics, how to realize the collaborative optimization of BDS and permittivity is the key to improve the energy storage density. In this work, ZrO2 is introduced into BPKNAS glass-ceramics as nucleating agent to promote crystal development of glass-ceramics and then achieve high permittivity. When 1.5 mol% ZrO2 is added, the glass-ceramics have the highest permittivity (~128.59) and meanwhile possess high BDS (1948.90 kV/cm) due to the dense microstructure. Therefore, BPKNAS-1.5ZrO2 glass-ceramics has the highest theoretical energy storage density (21.62 J/cm3). Moreover, the permittivity variation of BPKNAS-1.5ZrO2 glass-ceramics is less than 6 % in the wide temperature range from −80 to 300 ℃, showing excellent temperature stability. In addition, BPKNAS-1.5ZrO2 glass-ceramics possesses ultrahigh power density, which reaches up to 382.40 MW/cm3 in overdamped circuit. The above evidence shows that BPKNAS-1.5ZrO2 glass-ceramics with ultrahigh energy storage density and power density is very competitive in the field of energy storage applications.

Publication history
Copyright
Rights and permissions

Publication history

Received: 17 December 2021
Revised: 24 February 2022
Accepted: 03 March 2022
Published: 11 March 2022
Issue date: July 2022

Copyright

© 2022 The Chinese Ceramic Society.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return