AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Modulus spectroscopy for the detection of parallel electric responses in electroceramics

Till Frömlinga( )Yao LiubAn-Phuc HoangaMaximillian GehringeraSebastian SteineraMikalai ZhukcJulia GlaumcBai-Xiang Xub
Department of Materials and Earth Science, Technical University of Darmstadt, FG Nichtmetallisch-Anorganische Werkstoffe, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
Department of Materials and Earth Science, Technical University of Darmstadt, FG Mechanics of Functional Materials, Otto-Berndt-Straße 3, 64287, Darmstadt, Germany
Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Functional Materials and Materials Chemistry Group (FACET), Sem Sælands Vei 12, 7491, Trondheim, Norway

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Impedance spectroscopy has become one of the most versatile and essential investigation methods concerning electrical properties of materials for electronic and energy applications. Deriving knowledge about physical mechanisms, however, often demands excellent expertise in evaluating the spectra. Investigating different representations of the same data set can help elucidate the underlying physics, but this is rarely applied. In this work, the importance of using the modulus representation to identify parallel electric responses is rationalized. Those responses result from parallel conducting pathways, e.g., at grain boundaries, or from regions with differing permittivity, e.g., in composites. Qualitative and quantitative data can be obtained, as it is illustrated based on experimental data from electroceramics and respective physical simulation results using the finite element method. The findings should help to study intricate electric responses of materials with chemical or structural heterogeneity.

References

[1]

Huber A-K, Falk M, Rohnke M, Luerßen B, Gregoratti L, Amati M, Janek J. Phys Chem Chem Phys 2012;14: 751-8.

[2]

Fleig J. Solid State Ionics 2000;131: 117-27.

[3]

Fleig J, Maier J. J Eur Ceram Soc 1999;19: 693-6.

[4]

Costa SIR, Li M, Frade JR, Sinclair DC. RSC Adv 2013;3: 7030-6.

[5]

Preis W, Bürgermeister A, Sitte W, Supancic P. Solid State Ionics 2004;173: 69-75.

[6]

Boukamp BA. Solid State Ionics 2004;169: 65-73.

[7]

Funke K, Banhatti RD, Brückner S, Cramer C, Krieger C, Mandanici A, Martiny C, Ross I. Phys Chem Chem Phys 2002;4: 3155-67.

[8]

Jamnik J, Maier J, Pejovnik S. Electrochim Acta 1999;44: 4139-45.

[9]

Hodge IM, Ingram MD, West AR. J Electroanal Chem Interfacial Electrochem 1976;74: 125-43.

[10]

Irvine JTS, Sinclair DC, West AR. Adv Mater 1990;2: 132-8.

[11]

Hurt RL, Macdonald JR. Solid State Ionics 1986;20: 111-24.

[12]

Macdonald JR. Electrochim Acta 1990;35: 1483-92.

[13]

Boukamp BA, Ross Macdonald J. Solid State Ionics 1994;74: 85-101.

[14]
Barsoukov E, Macdonald J. Fundamentals of impedance spectroscopy, impedance spectroscopy. John Wiley & Sons, Inc.; 2005.
[15]

Gerstl M, Navickas E, Friedbacher G, Kubel F, Ahrens M, Fleig J. Solid State Ionics 2011;185: 32-41.

[16]

Peters C, Weber A, Butz B, Gerthsen D, Ivers-Tiffée E. J Am Ceram Soc 2009;92: 2017-24.

[17]

Li M, Pietrowski MJ, De Souza RA, Zhang H, Reaney IM, Cook SN, Kilner JA, Sinclair DC. Nat Mater 2014;13: 31-5.

[18]

Rioja-Monllor L, Bernuy-Lopez C, Fontaine M-L, Grande T, Einarsrud M-A. J Mater Chem 2019;7: 8609-19.

[19]

Rupp GM, Schmid A, Nenning A, Fleig J. J Electrochem Soc 2016;163: F564-73.

[20]

Schmid A, Rupp GM, Fleig J. Phys Chem Chem Phys 2018;20: 12016-26.

[21]

Rupp GM, Opitz AK, Nenning A, Limbeck A, Fleig J. Nat Mater 2017;16: 640-5.

[22]

Lai W, Haile SM. J Am Ceram Soc 2005;88: 2979-97.

[23]

Medenbach L, Bender CL, Haas R, Mogwitz B, Pompe C, Adelhelm P, Schröder D, Janek J. Energy Technol 2017;5: 2265-74.

[24]

Kranz S, Kranz T, Graubner T, Yusim Y, Hellweg L, Roling B. Batteries & Supercaps 2019;2: 1026-36.

[25]

West A, Sinclair D, Hirose N. J Electroceram 1997;1: 65-71.

[26]

Huang Y, Wu K, Xing Z, Zhang C, Hu X, Guo P, Zhang J, Li J. J Appl Phys 2019;125: 084103.

[27]

Rödel J, Jo W, Seifert KTP, Anton E-M, Granzow T, Damjanovic D. J Am Ceram Soc 2009;92: 1153-77.

[28]

Koruza J, Bell AJ, Frömling T, Webber KG, Wang K, Rödel J. Journal of Materiomics 2018;4: 13-26.

[29]

Frömling T, Steiner S, Ayrikyan A, Bremecker D, Dürrschnabel M, Molina-Luna L, Kleebe H-J, Hutter H, Webber KG, Acosta M. J Mater Chem C 2018;6: 738-44.

[30]

Steiner S, Heldt J, Sobol O, Unger W, Frömling T. J Am Ceram Soc 2021;104: 4341-50.

[31]

Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe H-J, Bell AJ, Rödel J. J Appl Phys 2011;110: 074106.

[32]

Kling J, Tan X, Jo W, Kleebe H-J, Fuess H, Rödel J. J Am Ceram Soc 2010;93: 2452-5.

[33]

Daniels JE, Jo W, Rödel J, Honkimäki V, Jones JL. Acta Mater 2010;58: 2103-11.

[34]

Zang J, Li M, Sinclair DC, Jo W, Rödel J. J Am Ceram Soc 2014;97: 1523-9.

[35]

Gorfman S, Thomas PA. J Appl Crystallogr 2010;43: 1409-14.

[36]

Schmitt LA, Kling J, Hinterstein M, Hoelzel M, Jo W, Kleebe HJ, Fuess H. J Mater Sci 2011;46: 4368-76.

[37]

Zang J, Li M, Sinclair DC, Frömling T, Jo W, Rödel J. J Am Ceram Soc 2014;97: 2825-31.

[38]

Acosta M, Zang JD, Jo W, Rodel J. J Eur Ceram Soc 2012;32: 4327-34.

[39]

Höfling M, Steiner S, Hoang A-P, Seo I-T, Frömling T. J Mater Chem C 2018;6: 4769-76.

[40]

Guo X, Zhang Z, Sigle W, Wachsman E, Waser R. Appl Phys Lett 2005;87.

[41]

East J, Sinclair DC. J Mater Sci Lett 1997;16: 422-5.

[42]

Gerhardt R. J Phys Chem Solid 1994;55: 1491-506.

[43]

Grant RJ, Ingram MD, West AR. Electrochim Acta 1977;22: 729-34.

[44]

Almond DP, Hunter CC, West AR. J Mater Sci 1984;19: 3236-48.

[45]

Huggins RA. Ionics 2002;8: 300-13.

[46]

Maier J. Ber Bunsen Ges Phys Chem 1986;90: 26-33.

[47]

Liu Y, Bai Y, Jaegermann W, Hausbrand R, Xu B-X. ACS Appl Mater Interfaces 2021;13: 5895-906.

[48]

Koch L, Steiner S, Meyer K-C, Seo I-T, Albe K, Frömling T. J Mater Chem C 2017;5: 8958-65.

[49]

Xu Q, Lanagan MT, Luo W, Zhang L, Xie J, Hao H, Cao M, Yao Z, Liu H. J Eur Ceram Soc 2016;36: 2469-77.

[50]

Bayer TJM, Wang J-J, Carter JJ, Moballegh A, Baker J, Irving DL, Dickey EC, Chen L-Q, Randall CA. Acta Mater 2016;117: 252-61.

[51]

Vögler M, Novak N, Schader FH, Rödel J. Phys Rev B 2017;95: 024104.

[52]

Acosta M, Zang J, Jo W, Rödel J. J Eur Ceram Soc 2012;32: 4327-34.

[53]

Acosta M, Schmitt LA, Molina-Luna L, Scherrer MC, Brilz M, Webber KG, Deluca M, Kleebe H-J, Rödel J, Donner W. J Am Ceram Soc 2015;98: 3405-22.

[54]

Koruza J, Rojas V, Molina-Luna L, Kunz U, Duerrschnabel M, Kleebe H-J, Acosta M. J Eur Ceram Soc 2016;36: 1009-16.

[55]

Thong H-C, Zhao C, Zhu Z-X, Chen X, Li J-F, Wang K. Acta Mater 2019;166: 551-9.

[56]
Jaffe B, Cook WR, Jaffe H. Piezoelectric ceramics. Academic Press Inc.; 1971. p. 328.
Journal of Materiomics
Pages 556-569
Cite this article:
Frömling T, Liu Y, Hoang A-P, et al. Modulus spectroscopy for the detection of parallel electric responses in electroceramics. Journal of Materiomics, 2022, 8(3): 556-569. https://doi.org/10.1016/j.jmat.2021.12.005

296

Views

4

Crossref

7

Web of Science

7

Scopus

Altmetrics

Received: 05 August 2021
Revised: 12 December 2021
Accepted: 20 December 2021
Published: 28 December 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return