AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

High thermoelectric performance of ZrTe2/SrTiO3 heterostructure

Chun Hung SuenaLong ZhangbKunya YangbM.Q. HebY.S. ChaibK. ZhoubHuichao Wangc( )X.Y. Zhoub( )Ji-Yan Daia( )
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
College of Physics, Chongqing University, Chongqing, 401331, China
School of Physics, Sun Yat-sen University, Guangzhou, 510275, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Achieving high thermoelectric performance in thin film heterostructures is essential for integrated and miniatured thermoelectric device applications. In this work, we demonstrate a mechanism and device performance of enhanced thermoelectric performance induced by interfacial effect in a transition metal dichalcogenides-SrTiO3 (STO) heterostructure. Owing to the formed conductive interface and elevated conductivity, the ZrTe2/STO heterostructure presents large thermoelectric power factor of 3.7 × 105 μWcm−1K−2 at 10 K. Formation of quasi-two-dimensional conductance at the interface is attributed for the large Seebeck coefficient and high electrical conductivity, leading to high thermoelectric performance which is demonstrated by a prototype device attaining 3 K cooling with 100 mA current input to this heterostructure. This superior thermoelectric property makes this heterostructure a promising candidate for future thermoelectric device.

References

[1]

Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, et al. Nat Mater 2007;6: 129-34.

[2]

Rama V, Edward S, Thomas C, Brooks OQ. Nature 2001;413: 597-602.

[3]

Chen X, Zhou Z, Lin Y-H, Nan C. J Materiomics 2020;6: 494-512.

[4]

Altenkirch E. Physikalische Zeitschrifr 1909;10.

[5]

Altenkirch E. Physikalische Zeitschrifr 1911;12: 920.

[6]

Hicks LD, Dresselhaus MS. Phys Rev B 1993;47: 12727-31.

[7]

Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, et al. Science 2008;321: 554-7.

[8]

Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ. Nature 2011;473: 66-9.

[9]

Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, et al. Phys Rev Lett 2012;108: 166601.

[10]

Suen CH, Shi D, Su Y, Zhang Z, Chan CH, Tang X, et al. J Materiomics 2017;3: 293-8.

[11]

Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, et al. Nature 2012;489: 414-8.

[12]

Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, et al. Science 2004;303: 818-21.

[13]

Zhao L-D, Lo SH, Zhang Y, Sun H, Tan G, Uher C, et al. Nature 2014;508: 373-7.

[14]

Peng K, Lu X, Zhan H, Hui S, Tang X, Wang G, et al. Energy Environ Sci 2016;9: 454-60.

[15]

Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, et al. Nat Mater 2012;11: 422-5.

[16]

Nagase K, Takado S, Nakahara K. physica status solidi (a) 2016;213: 1088-92.

[17]

Ohta H, Kim SW, Kaneki S, Yamamoto A, Hashizume T. Adv Sci (Weinh). 2018;5: 1700696.

[18]

Rhyee JS, Lee KH, Lee SM, Cho E, Kim SI, Lee E, et al. Nature 2009;459: 965-8.

[19]

Fukutani K, Sato T, Galiy PV, Sugawara K, Takahashi T. Phys Rev B 2016;93: 205156.

[20]

Ohtomo A, Hwang HY. Nature 2004;427: 423-6.

[21]

Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammerl G, Richter C, et al. Science 2007;317: 1196-9.

[22]

Gabay M, Triscone J-M. Nat Phys 2013;9: 610-1.

[23]

Dikin DA, Mehta M, Bark CW, Folkman CM, Eom CB, Chandrasekhar V. Phys Rev Lett 2011;107: 056802.

[24]

Ben Shalom M, Sachs M, Rakhmilevitch D, Palevski A, Dagan Y. Phys Rev Lett 2010;104: 126802.

[25]

Caviglia AD, Gabay M, Gariglio S, Reyren N, Cancellieri C, Triscone JM. Phys Rev Lett 2010;104: 126803.

[26]

Pallecchi I, Telesio F, Li D, Fete A, Gariglio S, Triscone JM, et al. Nat Commun 2015;6: 6678.

[27]

Wan X, Lu X, Sun L, Chen M, Ta N, Liu W, et al. J Energy Chem 2021;64: 16-22.

[28]

Wan X, Liu Z, Sun L, Jiang P, Bao X. J Mater Chem 2020;8: 10839-44.

[29]

Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, et al. Nature 2019;566: 475-9.

[30]

Tang F, Po HC, Vishwanath A, Wan X. Nature 2019;566: 486-9.

[31]

Vergniory MG, Elcoro L, Felser C, Regnault N, Bernevig BA, Wang Z. Nature 2019;566: 480-5.

[32]

Wang H, Chan CH, Suen CH, Lau SP, Dai JY. ACS Nano 2019;13: 6008-16.

[33]

Tsipas P, Tsoutsou D, Fragkos S, Sant R, Alvarez C, Okuno H, et al. ACS Nano 2018;12: 1696-703.

[34]

Machado AJS, Baptista NP, de Lima BS, Chaia N, Grant TW, Corrêa LE, et al. Phys Rev B 2017;95: 144505.

[35]
Fletcher R, Zaremba E, Zeitler U. Electron-phonon interactions in low-dimensional structures. Oxford: Oxford University Press; 2003.
[36]
Gallagher BL, Bucher PN. Handbook on semiconductors. Amsterdam: Elsevier; 1992.
[37]

Wang G, Endicott L, Chi H, Lost'ak P, Uher C. Phys Rev Lett 2013;111: 046803.

[38]

Martelli V, Jimenez JL, Continentino M, Baggio-Saitovitch E, Behnia K. Phys Rev Lett 2018;120.

[39]
Hurd CM. The Hall effect in metals and alloys. Boston: Springer; 1972.
[40]

Yan X, Zhang C, Liu S-S, Liu Y-W, Zhang DW, Xiu F-X, et al. Front Phys 2017;12.

[41]

Shimizu S, Shiogai J, Takemori N, Sakai S, Ikeda H, Arita R, et al. Nat Commun 2019;10: 825.

[42]

Tang C, Liu C, Zhou G, Li F, Ding H, Li Z, et al. Phys Rev B 2016;93.

[43]

Song CL, Zhang HM, Zhong Y, Hu XP, Ji SH, Wang L, et al. Phys Rev Lett 2016;116: 157001.

[44]

Zhang WH, Liu X, Wen CH, Peng R, Tan SY, Xie BP, et al. Nano Lett 2016;16: 1969-73.

[45]

Zhang H, Zhang D, Lu X, Liu C, Zhou G, Ma X, et al. Nat Commun 2017;8: 214.

[46]

Zhao W, Li M, Chang C-Z, Jiang J, Wu L, Liu C, et al. Sci Adv 2018;4.

[47]

Wang Q, Zhang W, Zhang Z, Sun Y, Xing Y, Wang Y, et al. 2D Mater 2015;2.

[48]

Grosse KL, Bae MH, Lian F, Pop E, King WP. Nat Nanotechnol 2011;6: 287-90.

Journal of Materiomics
Pages 570-576
Cite this article:
Suen CH, Zhang L, Yang K, et al. High thermoelectric performance of ZrTe2/SrTiO3 heterostructure. Journal of Materiomics, 2022, 8(3): 570-576. https://doi.org/10.1016/j.jmat.2021.12.004

383

Views

5

Crossref

7

Web of Science

7

Scopus

Altmetrics

Received: 19 October 2021
Revised: 29 November 2021
Accepted: 20 December 2021
Published: 28 December 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return