AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Stress-induced controllable magnetic properties in flexible epitaxial Mn0.5Zn0.5Fe2O4 ferrite films

Tian Wang1Guohua Dong1Yuxuan MaHaixia LiuZiyao ZhouMing Liu( )
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China

]]>

Show Author Information

Graphical Abstract

Abstract

Flexible ferrite film has high potential applications in electronic skins and wearable devices. However, it is an enormous challenge to fabricate flexible ferrite film because of its high fragility. This work uses a novel etching sacrificial Sr3Al2O6 (SAO) layer to synthesize flexible Mn0.5Zn0.5Fe2O4 (MZFO) ferrite film. The MZFO film remains its single crystal structure after being transferred onto a flexible substrate. Owing to the great lattice mismatch between SAO and MZFO, the as-grown and transferred MZFO films exhibit the difference in magnetic properties, which is more sensitive along out-of-plane direction. The controllable magnetic properties of the film under the bending test are characterized by ferromagnetic resonance (FMR). A huge FMR field (Hr) shift of 704 Oe is achieved along out-of-plane direction when the bending radii are 5 mm. Meanwhile, the FMR linewidth (δH) of bent MZFO film (1267 Oe) is about 4 times higher than that of the unbent film (310 Oe). These controllable changes mainly come from the contribution of the two magnon scattering (TMS) effect. Finally, the Hr and δH almost return to their initial states when the stress is released, indicating a great recoverability.

References

[1]

Chortos A, Liu J, Bao Z. Nat Mater 2016;15: 937-50.

[2]

Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Adv Mater 2014;26: 5310-36.

[3]

Liu W, Wang H. J Materiomics 2020;6: 385-96.

[4]

Thiemann S, Sachnov SJ, Gruber M, Gannott F, Spallek S, Schweiger M, et al. J Mater Chem C 2014;2: 2423-30.

[5]

Guo H, Song KD. IEEE Access 2019;7: 115428-39.

[6]

Gorbachev E, Soshnikov M, Wu M, Alyabyeva L, Myakishev D, Kozlyakova E, et al. J Mater Chem C 2021;9: 6173-9.

[7]

Wang Y, Ramaswamy R, Yang H. J Phys D Appl Phys 2018;51: 273002.

[8]

Liu J, Chen J, Zhang Y, Fu S, Chai G, Cao C, et al. ACS Appl Mater Interfaces 2021;13: 29975-83.

[9]

Song N, Lv B, Meng J, Gong Z, Zhang X, Zhan Q. J Magn Magn Mater 2021;519: 167510.

[10]

Gonçalves R, Larrea A, Sebastian MS, Sebastian V, Martins P, Lanceros-Mendez S. J Mater Chem C 2016;4: 10701-6.

[11]

Yuan J, Liu Z-Q. Compos Sci Technol 2018;164: 8-16.

[12]

Liu HJ, Wang CK, Su D, Amrillah T, Hsieh YH, Wu KH, et al. ACS Appl Mater Interfaces 2017;9: 7297-304.

[13]

Li J, Wu J, Shen L, Yang J, Lu L, Cao C, et al. Mater Today Phys 2020;13: 100218.

[14]

Yang B, Li C, Liu M, Wei R, Tang X, Hu L, et al. J Materiomics 2020;6: 600-6.

[15]

Zhang Y, Shen L, Liu M, Li X, Lu X, Lu L, et al. ACS Nano 2017;11: 8002-9.

[16]

Shen L, Wu L, Sheng Q, Ma C, Zhang Y, Lu L, et al. Adv Mater 2017;29: 1702411.

[17]

Paskiewicz DM, Sichel-Tissot R, Karapetrova E, Stan L, Fong DD. Nano Lett 2016;16: 534-42.

[18]

Lu D, Baek DJ, Hong SS, Kourkoutis LF, Hikita Y, Hwang HY. Nat Mater 2016;15: 1255-60.

[19]

Dong G, Li S, Yao M, Zhou Z, Zhang Y-Q, Han X, et al. Science 2019;366: 475-9.

[20]

Wang H, Shen L, Duan T, Ma C, Cao C, Jiang C, et al. ACS Appl Mater Interfaces 2019;11: 22677-83.

[21]

An F, Qu K, Zhong G, Dong Y, Ming W, Zi M, et al. Adv Funct Mater 2020;30: 2003495.

[22]

Hong SS, Gu M, Verma M, Harbola V, Wang BY, Lu D, et al. Science 2020;368: 71-6.

[23]

Farheen A, Singh R. J Supercond Nov Magnetism 2019;32: 2679-86.

[24]

Denecke R, Welke M, Huth P, Gräfe J, Brachwitz K, Lorenz M, et al. Phys Status Solidi B 2020;257: 1900627.

[25]

Ponjavic M, Veinovic S. J Magn Magn Mater 2021;518: 167368.

[26]

Baek DJ, Lu D, Hikita Y, Hwang HY, Kourkoutis LF. ACS Appl Mater Interfaces 2017;9: 54-9.

[27]

Han L, Fang Y, Zhao Y, Zang Y, Gu Z, Nie Y, et al. Adv Mater Interfaces 2020;7: 1901604.

[28]

Angadi VJ, Rudraswamy B, Sadhana K, Praveena K. J Magn Magn Mater 2016;409: 111-5.

[29]

Huan-hua W. Powder Diffr 2010;25: S48-51.

[30]

Gabrys PA, Seo SE, Wang MX, Oh E, Macfarlane RJ, Mirkin CA. Nano Lett 2018;18: 579-85.

[31]

Daoudi K, El-Helali S, Othmen Z, Suleiman BM, Tsuchiya T. J Materiomics 2020;6: 17-23.

[32]

Yin J-X, Liu Z-G, Wu S-F, Wang W-H, Kong W-D, Richard P, et al. AIP Adv 2016;6: 065111.

[33]

Xue X, Zhou Z, Dong G, Feng M, Zhang Y, Zhao S, et al. ACS Nano 2017;11: 9286-93.

[34]

Zhao Y, Zhao S, Wang L, Zhou Z, Liu J, Min T, et al. Adv Sci 2019;6: 1901994.

[35]

Zhao Y, Peng R, Guo Y, Liu Z, Dong Y, Zhao S, et al. Adv Funct Mater 2021;31: 2009376.

[36]

Wei Y, Wang J, Wang X, Chen H, Yu C, He Y, et al. J Magn Magn Mater 2021;538: 168312.

[37]

Zhao Y, Li Y, Zhou Z, Peng R, Zhu S, Yao M, et al. Mater Horiz 2020;7: 1558-65.

[38]

Wang X, Chen Y, Chen H, Gao Y, He Y, Li M, et al. Appl Phys Lett 2018;112: 192903.

[39]

Liu M, Obi O, Cai Z, Lou J, Yang G, Ziemer KS, et al. J Appl Phys 2010;107: 073916.

[40]

Liu W, Liu M, Ma R, Zhang R, Zhang W, Yu D, et al. Adv Funct Mater 2018;28: 1705928.

Journal of Materiomics
Pages 596-600
Cite this article:
Wang T, Dong G, Ma Y, et al. Stress-induced controllable magnetic properties in flexible epitaxial Mn0.5Zn0.5Fe2O4 ferrite films. Journal of Materiomics, 2022, 8(3): 596-600. https://doi.org/10.1016/j.jmat.2021.12.001

277

Views

6

Crossref

7

Web of Science

7

Scopus

Altmetrics

Received: 18 September 2021
Revised: 12 November 2021
Accepted: 04 December 2021
Published: 16 December 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return