Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Compared with antiferroelectric (AFE) orthorhombic R phases, AFE orthorhombic P phases in NaNbO3 (NN) ceramics have been rarely investigated, particularly in the field of energy-storage capacitors. The main bottleneck is closely related to the contradiction between difficultly-achieved stable relaxor AFE P phase and easily induced P-R phase transition during modifying chemical compositions. Herein, we report a novel lead-free AFE ceramic of (1-x)NN-x(Bi0.5K0.5)ZrO3 ((1-x)NN-xBKZ) with a pure AFE P phase structure, which exhibits excellent energy-storage characteristics, such as an ultrahigh recoverable energy density (Wrec) ~4.4 J/cm3 at x = 0.11, a large powder density PD ~104 MW/cm3 and a fast discharge rate t0.9–45 ns. The analysis of polarization-field response, Raman spectrum and transmission electron microscopy demonstrates that the giant amplification of Wrec by ≥ 177 % should be mainly ascribed to the simultaneously and effectively enhanced AFE P-phase stability and its relaxor characteristics, resulting in a diffused reversible electric field-induced AFE P-ferroelectric phase transition with concurrently increased driving electric fields. Different from most (1-x)NN-xABO3 systems, it was found that the reduced polarizability of B-site cations dominates the enhanced AFE P-phase stability in (1-x)NN-xBKZ ceramics, but the almost unchanged tolerance factor tends to cause the AFE R phase to be induced at a relatively high x value.
Randall CA, Fan ZM, Reaney I, Chen LQ, Trolier-McKinstry S. J Am Ceram Soc 2021;104: 3775-810.
Qi H, Zuo RZ, Xie AW, Tian A, Fu J, Zhang Y, Zhang SJ. Adv Funct Mater 2019;29: 1903877.
Liu Z, Lu T, Ye JM, Wang GS, Dong XL, Withers R, Liu Y. Adv Mater Technol 2018: 1800111.
Zhao L, Liu Q, Gao J, Zhang SJ, Li JF. Adv Mater 2017: 1701824.
Hao XH, Zhai JW, Kong LB, Xu ZK. Prog Mater Sci 2014;63: 1-57.
Lu ZL, Bao WC, Wang G, Sun SK, Li LH, Li JL, Yang HJ, Ji HF, Feteira A, Li DJ, Xu FF, Kleppe AK, Wang DW, Liu SY, Reaney IM. Nano Energy 2021;79: 105423.
Liu H, Fan LL, Sun SD, Lin K, Ren Y, Tan XL, Xing XR, Chen J. Acta Mater 2020;184: 41-9.
Wang HS, Liu YC, Yang TQ, Zhang SJ. Adv Funct Mater 2018: 1807321.
Xu R, Tian JJ, Zhu QS, Zhao T, Feng YJ, Wei XY, Xu Z. J Am Ceram Soc 2017;100: 3618-25.
Chen XF, Cao F, Zhang HL, Yu G, Wang GS, Dong XL, Gu Y, He HL, Liu YS. J Am Ceram Soc 2012;95: 1163-6.
Qi H, Xie AW, Fu J, Zuo RZ. Acta Mater 2021;208: 116710.
Tan XL, Ma C, Frederick J, Beckman S, Webber KG. J Am Ceram Soc 2011;94: 4091-107.
Koruza J, Tellier J, Malič B, Bobnar V, Kosec M. J Appl Phys 2010;108: 113509.
Mishra SK, Choudhury N, Chaplot SL, Krishna PSR, Mittal R. Phys Rev B 2007;76: 024110.
Zhang MH, Fulanovic L, Egert S, Ding H, Groszewicz PB, Kleebe HJ, Molina-Luna L, Koruza J. Acta Mater 2020;200: 127-35.
Dou MX, Fu J, Zuo RZ. J Eur Ceram Soc 2018;38: 3104-31110.
Koruza J, Groszewicz P, Breitzke H, Buntkowsky G, Rojac T, Malic B. Acta Mater 2017;126: 77-85.
Shimizu H, Guo HZ, Reyes-Lillo SE, Mizuno Y, Rabec KM, Randall CA. Dalton Trans 2015;44: 10763-72.
Guo HZ, Shimizu H, Mizuno Y, Randall CA. J Appl Phys 2015;117: 214103.
Gao LS, Guo HZ, Zhang SJ, Randall CA. Appl Phys Lett 2018;112: 092905.
Ye JM, Wang GS, Chen XF, Cao F, Dong XL. Appl Phys Lett 2019;114: 122901.
Chen M, Pu YP, Zhang L, Shi Y, Zhuo FP, Zhang QW, Li R, Du XY. Ceram Int 2021;47: 21303-9.
Zhang MH, Hadaeghi N, Egert S, Ding H, Zhang HB, Groszewicz PB, Buntkowsky G, Klein A, Koruza J. Chem Mater 2021;33: 266-74.
Liu ZY, Lu JS, Mao YQ, Ren PR, Fan HQ. J Eur Ceram Soc 2018;38: 4939-45.
Qi H, Zuo RZ, Xie AW, Fu J, Zhang D. J Eur Ceram Soc 2019;39: 3703-9.
Xie AW, Qi H, Zuo RZ, Tian A, Chen J, Zhang SJ. J Mater Chem C 2019;7: 15153-61.
Bian JJ, Otonicar M, Spreitzer M, Vengust D, Suvorov D. J Eur Ceram Soc 2019;39: 2339-47.
Fulanović L, Zhang MH, Fu YP, Koruza J, Rödel J. J Eur Ceram Soc 2021;41: 5519-25.
Yang LT, Kong X, Li F, Hao H, Cheng ZX, Liu HX, Li JF, Zhang SJ. Prog Mater Sci 2019;102: 72-108.
Weibull W. J Appl Mech 1951;18: 293-7.
Ye JM, Wang GS, Zhou MX, Liu NT, Chen XF, Li S, Cao F, Dong XL. J Mater Chem C 2019;7: 5639-45.
Xie AW, Qi H, Zuo RZ. ACS Appl Mater Interfaces 2020;12: 19467-75.
Wang JB, Fan HQ, Wang MQ, Fan PY. Ceram Int 2021;47: 17964-70.
Ye JM, Wang GS, Chen XF, Dong XL. J Materiomics 2021;7: 339-46.
Tian Y, Jin L, Zhang HF, Xu Z, Wei XY, Viola G, Abrahams I, Yan HY. J Mater Chem A 2017;5: 17525-31.
Luo NN, Han K, Zhuo FP, Liu LJ, Chen XY, Peng BL, Wang XP, Feng Q, Wei YZ. J Mater Chem C 2019;7: 4999-5008.
Gao J, Liu Q, Dong JF, Wang XP, Zhang SJ, Li JF. ACS Appl Mater Interfaces 2020;12: 6097-104.
Yuzyuk YI, Simon P, Gagarina E, Hennet L, Thiaudiere D, Torgashev VI, Raevskaya SI, Raevskii IP, Reznitchenko LA, Sauvajol JL. J Phys Condens Matter 2005;17: 4977-90.
Lima RJC, Freire PTC, Sasaki JM, Ayala AP, Melo FEA, Mendes Filho J, Serra KC, Lanfredi S, Lente MH, Eiras JA. J Raman Spectrosc 2002;33: 669-74.
Chen J, Qi H, Zuo RZ. ACS Appl Mater Interfaces 2020;12: 32871-9.
Tian A, Zuo RZ, Qi H, Shi M. J Mater Chem A 2020;8: 8352-9.
Dong XY, Li X, Chen XL, Chen HY, Sun CC, Shi JP, Pang FH, Zhou HF. J Materiomics 2021;7: 629-39.
Pang FH, Chen XL, Shi JP, Sun CC, Chen HY, Dong XY, Zhou HF. ACS Sustainable Chem Eng 2021;9: 4863-71.
Jiang J, Meng XJ, Li L, Guo S, Huang M, Zhang J, Wang J, Hao XH, Zhu HG, Zhang ST. Energy Storage Mater 2021;43: 383-90.
Megaw HD. Ferroelectrics 1974;7: 87-9.
Darlington CNW. Solid State Commun 1979;29: 307-11.
Darlington CNW, Knight KS. Phys B 1999;266: 368-72.
Shiratori Y, Magrez A, Fischer W, Pithan C, Waser R. J Phys Chem C 2007;111: 18493-502.
Mishra SK, Mittal R, Pomjakushin VY, Chaplot SL. Phys Rev B 2011;83: 134105.
Zhong W, Vanderbilt D. Phys Rev Lett 1995;74: 2587-90.
Shannon RD. Phys Rev B 2006;73: 235111.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).