AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Robustly stable intermediate memory states in HfO2−based ferroelectric field−effect transistors

Chen LiuaBinjian Zenga,b( )Siwei DaiaShuaizhi ZhengaQiangxiang PengaJinjuan XiangdJianfeng GaodJie ZhaodJincheng ZhangeMin Liaoa,c( )Yichun Zhoua,c
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan, 411105, China
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, China
Integrated Circuit Advanced Process R&D Center and Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, China
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, 710071, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Multilevel ferroelectric field−effect transistors (FeFETs) integrated with HfO2−based ferroelectric thin films demonstrate tremendous potential in high−speed massive data storage and neuromorphic computing applications. However, few works have focused on the stability of the multiple memory states in the HfO2−based FeFETs. Here we firstly report the write/read disturb effects on the multiple memory states in the Hf0.5Zr0.5O2 (HZO)−based FeFETs. The multiple memory states in HZO−based FeFETs do not show obvious degradation with the write and read disturb cycles. Moreover, the retention characteristics of the intermediate memory states in HZO−based FeFETs with unsaturated ferroelectric polarizations are better than that of the memory state with saturated ferroelectric polarization. Through the deep analysis of the operation principle of in HZO−based FeFETs, we speculate that the better retention properties of intermediate memory states are determined by the less ferroelectric polarization degradation and the weaker ferroelectric polarization shielding. The experimental and theoretical evidences confirm that the long−term stability of the intermediate memory states in HZO−based FeFETs are as robust as that of the saturated memory state, laying a solid foundation for their practical applications.

References

[1]

Wong HSP, Salahuddin S. Nat Nanotechnol 2015;10:191-4. https://doi.org/10.1038/nnano.2015.29.

[2]

Zhang ZC, Li Y, Li J, Li JQ, Chen XD, Yao BW, Yu MX, Lu TB, Zhang J. Adv Funct Mater 2021:2102571. https://doi.org/10.1002/adfm.202102571.

[3]

Szkopek T. Nat Nanotechnol 2021:1-2. https://doi.org/10.1038/s41565-021-00932-1.

[4]

Chen A. Solid−State Electron 2016;125:25-38. https://doi.org/10.1016/j.sse.2016.07.006.

[5]

Khan AI, Keshavarzi A, Datta S. Nat Electron 2020;3:588-97. https://doi.org/10.1038/s41928-020-00492-7.

[6]

Ni K, Yin X, Laguna AF, Joshi S, Dünkel S, Trentzsch M, Müller J, Beyer S, Niemier M, Hu XS, Datta S. Nat Electron 2019;2:521-9. https://doi.org/10.1038/s41928-020-0374-3.

[7]

Cheema SS, Kwon D, Shanker N, Reis RD, Hsu SL, Xiao J, Zhang H, Wagner R, Datar A, McCarter MR, Serrao CR, Yadav AK, Karbasian G, Hsu CH, Tan AJ, Wang LC, Thakare V, Zhang X, Mehta A, Karapetrova E, Chopdekar RV, Shafer P, Arenholz E, Hu C, Proksch R, Ramesh R, Ciston J, Salahuddin S. Nature 2020;580:478-82. https://doi.org/10.1038/s41586-020-2208-x.

[8]

Lee HJ, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae SC, Waghmare U, Lee JH. Science 2020;369:1343. https://doi.org/10.1126/science.aba0067.

[9]
Florent K, Pesic M, Subirats A, Banerjee K, Lavizzari S, Arreghini A, Piazza LD, Potoms G, Sebaai F, McMitchell SRC, Popovici M, Groeseneken G, Houdt JV. IEEE Int Electron Dev Meet (IEDM) 2018. https://doi.org/10.1109/IEDM.2018.8614710. 2.5.1-2.5.4.
[10]
Dünkel S, Trentzsch M, Richter R, Moll P, Fuchs C, Gehring O, Majer M, Wittek S, Müller B, Melde T, Mulaosmanovic H, Slesazeck S, Müller S, Ocker J, Noack M, Löhr DA, Polakowski P, Müller J, Mikolajick T, Höntschel J, Rice B, Pellerin J, Beyer S. IEEE Int Electron Dev Meet (IEDM) 2017. https://doi.org/10.1109/IEDM.2017.8268425. 19.7.1-19.7.4.
[11]

Zeng BJ, Liu C, Dai SW, Zhou PA, Bao KY, Zheng SZ, Peng QX, Xiang JJ, Gao JF, Zhou J, Liao M, Zhou YC. Adv Funct Mater 2021;31:2011077. https://doi.org/10.1002/adfm.202011077.

[12]
Luo Q, Gong T, Cheng Y, Zhang QZ, Yu H, Yu J, Ma HL, Xu XX, Huang KL, Zhu X, Dona D, Yin JH, Yuan P, Tai L, Gao JF, Li J, Yin HX, Long SB, Liu Q, Lv HB, Liu M. IEEE Int Electron Dev Meet (IEDM) 2018. https://doi.org/10.1109/IEDM.2018.8614650. 2.6.1-2.6.4.
[13]

Chatterjee K, Kim S, Karbasian G, Kwon D, Tan AJ, Yadav AK, Serrao CR, Hu CM, Salahuddin S. IEEE Electron Device Lett 2019;40:1423-6. https://doi.org/10.1109/LED.2019.2931430.

[14]
Ali T, Polakowski P, Kühnel K, Czernohorsky M, Kämpfe T, Rudolph M, Pätzold B, Lehninger D, Müller F, Olivo R, Lederer M, Hoffmann R, Steinke P, Zimmermann K, Mühle U, Seidel K, Müller J. IEEE Int. Electron Devices Meet (IEDM) 2019;28. https://doi.org/10.1109/IEDM19573.2019.8993642. 7.1-28.7.4.
[15]

Zeng BJ, Liao M, Peng QX, Xiao WW, Liao JJ, Zheng SZ, Zhou YC. IEEE J Electron Devices Soc 2019;7:551-6. https://doi.org/10.1109/JEDS.2019.2913426.

[16]

Lee K, Lee HJ, Lee TY, Lim HH, Song MS, Yoo HK, Suh DI, Lee JG, Zhu ZW, Yoon A, MacDonald MR, Lei XJ, Park K, Park J, Lee JH, Chae SC. Appl Mater Inter 2019;11:38929-36. https://doi.org/10.1021/acsami.9b1287838929.

[17]

Ni K, Li X, Smith AJ, Jerry M, Datta S. IEEE Electron Device Lett 2018;39: 1656-9. https://doi.org/10.1109/LED.2018.2872347.

[18]

Xiao WW, Liu C, Peng Y, Zheng SZ, Feng Q, Zhang CF, Zhang JC, Hao Y, Liao M, Zhou YC. Nanoscale Res Lett 2019;14:254. https://doi.org/10.1186/s11671-019-3063-2.

[19]

Kai N, Pankaj S, Zhang J, Matthew J, Jeffery AS, Kandabara T, Robert, Souvik M, Suman D. IEEE Trans Electron Dev 2018;65:2461-9. https://doi.org/10.1109/TED.2018.2829122.

[20]

Aritome S. John Wiley Sons 2015. https://doi.org/10.1002/9781119132639.ch1.

[21]

Chen KT, Chen HY, Liao CY, Siang GY, Lo C, Liao MH, Li KS, Chang ST, Lee MH. IEEE Electron Device Lett 2019;40:399-402. https://doi.org/10.1109/LED.2019.2896231.

[22]

Chatterjee K, Kim S, Karbasian G, Kwon D, Tan AJ, Yadav AK, Serrao CR, Hu C, Salahuddin S. IEEE Electron Device Lett 2019;40:1423-6. https://doi.org/10.1109/LED.2019.2931430.

[23]

Gong NB, Ma TP. IEEE Electron Device Lett 2016;37:1123. https://doi.org/10.1109/LED.2016.2593627.

[24]

Ma TP, Han JP. IEEE Electron Device Lett 2002;23:386. https://doi.org/10.1109/LED.2002.1015207.

[25]

Park BE, Ishiwara H, Okuyama M, Sakai S, Yoon SM. Springer Dordrecht 2016: 141-55. https://doi.org/10.1007/978-94-024-0841-6.

[26]

Chiu FC. Adv Mater Sci Eng 2014:1-18. https://doi.org/10.1155/2014/578168.

Journal of Materiomics
Pages 685-692
Cite this article:
Liu C, Zeng B, Dai S, et al. Robustly stable intermediate memory states in HfO2−based ferroelectric field−effect transistors. Journal of Materiomics, 2022, 8(3): 685-692. https://doi.org/10.1016/j.jmat.2021.11.003

373

Views

6

Crossref

7

Web of Science

7

Scopus

Altmetrics

Received: 12 August 2021
Revised: 31 October 2021
Accepted: 04 November 2021
Published: 12 November 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return