Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Sustainable light energy from ambient environment has attracted particular attention to meet the ever-growing need of small-scale electronics. The modulation of intercorrelated thermal and electronic transport is one of the crucial aspects for reliable photothermoelectric electronics. Herein, a defect-promoted photothermoelectric effect is demonstrated in densely aligned ZnO nanorod array with rich lattice defects. The defect-rich ZnO device delivers high electrical conductivity and large Seebeck coefficient to enable significant improvement of photothermoelectric energy conversion and self-powered photodetection. The position sensitivity reaches approximately 0.19 mV mm−1, and the temperature gradient induced electric field makes up for the suppression in the photothermoelectric process. The synergism between intrinsic defects and extra temperature field plays an important role in promoting the photothermoelectric properties of dense ZnO nanorod array. This study is interesting for interpreting the thermo-phototronic phenomena as well as demonstrating the possibility of defect engineering and phonon engineering to enable highly efficient light energy scavenging and self-powered photodetection.
Zhao W, Zhang F, Dai X, Jin W, Xiang L, Ding J, Wang X, Wan Y, Shen H, He Z, Wang J, Gao X, Zou Y, Di CA, Zhu D. Adv Mater 2020;32: 2000273.
Wang P, Du X, Wang X, Zhang K, Sun J, Chen Z, Xia Y. J Power Sources 2021;506: 230130.
Zhang K, Wang Y, Yang Y. Adv Funct Mater 2019;29: 1806435.
Gong J, Li C, Wasielewski MR. Chem Soc Rev 2019;48: 1862-4.
Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K. Nat Energy 2017;2: 17032.
Ma N, Zhang K, Yang Y. Adv Mater 2017;29: 1703694.
Gao L, Ma C, Wei S, Kuklin AV, Zhang H, Agren H. ACS Nano 2021;15: 954-65.
Guo B, Xiao Ql, Wang Sh, Zhang H. Laser Photon Rev 2019;13: 1800327.
Tuo M, Xu C, Mu H, Bao X, Wang Y, Xiao S, Ma W, Li L, Tang D, Zhang H, Premaratne M, Sun B, Cheng H-M, Li S, Ren W, Bao Q. ACS Photonics 2018;5: 1808-16.
Song W, Chen J, Li Z, Fang X. Adv Mater 2021;33: 2101059.
Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D, Fang X. Adv Funct Mater 2017;27: 1700264.
Ning Y, Zhang Z, Teng F, Fang X. Small 2018;14: 1703754.
Ma Y, Zhang Y, Li X, Zhao Y, Li M, Jiang W, Tang X, Dou J, Lu L, Wang F, Wang Y. ACS Nano 2019;13: 11967-80.
Zhen X, Cheng P, Pu K. Small 2019;15: 1804105.
Bai S, Zhang K, Sun J, Luo R, Li D, Chen A. CrystEngComm 2014;16: 3289-95.
Lu X, Jiang P, Bao X. Light Sci Appl 2019;10: 1-7.
Zhang K, Ouyang B, Wang Y, Xia Y, Yang Y. ACS Appl Energy Mater 2019;2: 7647-54.
Zhong Y, Zhang L, Linseis V, Qin B, Chen W, Zhao L-D, Zhu H. Nano Energy 2020;72: 104742.
Fuhrer MS, Medhekar NV. Nat Nanotechnol 2020;15: 241-3.
Zhang D, Song Y, Ping L, Xu S, Yang D, Wang Y, Yang Y. Nano Res 2019;12: 2982-7.
Dai W, Liu W, Yang J, Xu C, Alabastri A, Liu C, Nordlander P, Guan Z, Xu H. Light Sci Appl 2020;9: 1-8.
Wang Q, Yesilyurt C, Liu F, Siu ZB, Cai K, Kumar D, Liu Z, Jalil MBA, Yang H. Nano Lett 2019;19: 2647-52.
He M, Lin Y-J, Chiu C-M, Yang W, Zhang B, Yun D, Xie Y, Lin Z-H. Nano Energy 2018;49: 588-95.
Wang Q, Zhang Q, Zhao X, Zheng YJ, Wang J, Luo X, Dan J, Zhu R, Liang Q, Zhang L, Wong PKJ, He X, Huang YL, Wang X, Pennycook SJ, Eda G, Wee ATS. Nano Lett 2019;19: 5595-603.
Wu W, Wang ZL. Nat Rev Mater 2016;1: 1-17.
Benlamri M, Wiltshire BD, Zhang Y, Mahdi N, Shankar K, Barlage DW. ACS Appl Electron Mater 2019;1: 13-7.
Frodason YK, Johansen KM, Bjørheim TS, Svensson BG, Alkauskas A. Phys Rev B 2018;97: 104109.
Umar A. J Nanosci Nanotechnol 2010;10: 2381-8.
Du X, Tian W, Pan J, Hui B, Sun J, Zhang K, et al. Nano Energy 2021: 106694. https://doi.org/10.1016/j.nanoen.2021.106694.
Wu Z, Yu H, Shi S, Li Y. J Mater Chem A 2019;7: 14776-89.
Zhang Y. Chin Sci Bull 2021;65: 2662-3.
Han W, Zhou Y, Zhang Y, Chen C-Y, Lin L, Wang X, Wang S, Wang ZL. ACS Nano 2012;6: 3760-6.
Tran Nguyen NH, Nguyen TH, Liu YR, Aminzare M, Pham AT, Cho S, Wong DP, Chen KH, Seetawan T, Pham NK, Ta HK, Tran VC, Phan TB. ACS Appl Mater Interfaces 2016;8: 33916-23.
Paulson A, Muhammed Sabeer NA, Pradyumnan PP. J Alloys Compd 2019;786: 581-7.
Zhao M, Pan W, Wan C, Qu Z, Li Z, Yang J. J Eur Ceram Soc 2017;37: 1-13.
Zhao C, Li Z, Fan T, Xiao C, Xie Y. Research 2020;2020: 9652749.
Zhang X, Li J, Yang W, Leng B, Niu P, Jiang X, Liu B. ACS Appl Mater Interfaces 2019;11: 24459-67.
Ouyang B, Zhang K, Yang Y. Adv Mater Technol 2017;2: 1700208.
Li GR, Hu T, Pan GL, Yan TY, Gao XP, Zhu HY. J Phys Chem C 2008;112: 11859-64.
Zhang M, Zhao Z, Hui B, Sun J, Sun J, Tian W, Zhang Z, Zhang K, Xia Y. J Hazard Mater 2021;416: 126161.
Panda SK, Dev A, Chaudhuri S. J Phys Chem C 2007;111: 5039-43.
Lee M, Tu H. J Appl Phys 2007;101: 126103.
Wei X, Zhang Z, Yu Y, Man B. Opt Laser Technol 2009;41: 530-4.
Bora T, Sathe P, Laxman K, Dobretsov S, Dutta J. Catal Today 2017;284: 11-8.
Xue Z, Cheng Z, Xu J, Xiang Q, Wang X, Xu J. ACS Appl Mater Interfaces 2017;9: 41559-67.
Chen M, Wang Z, Han D, Gu F, Guo G. J Phys Chem C 2011;115: 12763-73.
Cheng W, Wu P, Zou X, Xiao T. J Appl Phys 2006;100: 054311.
Wang Q, Zhang D, Ma H, Zhang X, Zhang X. Appl Surf Sci 2003;220: 12-8.
Cherifi Y, Chaouchi A, Lorgoilloux Y, Rguiti M, Kadri A, Courtois C. Process Appl Ceram 2016;10: 125-35.
Bera A, Basak D. Appl Phys Lett 2009;94: 163119.
Qi B, Ólafsson S, Gíslason HP. Prog Mater Sci 2017;90: 45-74.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).