AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Enhanced energy storage performance under low electric field in Sm3+ doped AgNbO3 ceramics

Jing LiaLi JinaYe Tianb( )Chao ChenaYu LanaQingyuan HuaChao LicXiaoyong Weia( )Haixue Yand,e
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
Instrument Analysis Center, Xi'an Jiaotong University, China
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
Materials Research Institute, Queen Mary University of London, Mile End Road, London, E1 4NS, UK

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Herein, Ag1-3xSmxNbO3 (0 ≤ x ≤ 0.025) antiferroelectric ceramics were successfully synthesized by solid state methods. The effect of Sm3+ doping on the structure, property and energy storage performance were studied. With the increasing Sm3+ concentrations, the average grain size decreased. Meanwhile, the stability of high temperature M phases (i.e., the structure between Tf and T3) was expanded, which led to low loss for energy storage. Both of structure analysis and ferroelectric tests revealed the existence of weakly polar/AFE-like phase below Tf. The Sm3+ doping tended to suppress the ferroelectric behavior and expand the stability of antiferroelectricity. Consequently, a significantly enhanced energy storage performance (Wrec = 3.8 J/cm3, η = 73 %) could be achieved in Ag0.97Sm0.01NbO3 ceramic, which was almost 1.5 times larger than that in non-doped AgNbO3 (Wrec = 2.4 J/cm3, η = 45 %) under the similar applied field of 1705 kV/cm. In particular, the performance of the ceramic showed great temperature stability with variation of 5 % from 25 ℃ to 125 ℃. These results indicated that the Ag0.97Sm0.01NbO3 ceramic could be an ideal lead-free candidate used in the energy storage field.

References

[1]

Liu C, Li F, Ma LP, Cheng HM. Adv Mater 2010;22: E28-62.

[2]

Chu BJ, Zhou X, Ren KL, Neese B, Lin MR, Wang Q, Bauer F, Zhang QM. Science 2006;313: 1887. 1887.

[3]

Hu QY, Tian Y, Zhu Q, Bian J, Jin L, Du H, Alikin DO, Shur VY, Feng Y, Xu Z, Wei XY. Nano Energy 2020;67: 104264.

[4]

Li Q, Han K, Gadinski MR, Zhang GZ, Wang Q. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 2014;26: 6244-9.

[5]

Liu X, Shi J, Zhu FY, Du HL, Li TY, Liu XC, Lu H. J Materiomics 2018;4: 202-7.

[6]

Liu Z, Lu T, Ye JM, Wang GS, Dong XL, Withers R, Liu Y. Adv Mater Technol 2018;3: 1800111.

[7]

Dang ZM, Yuan JK, Yao SH, Liao RJ. Adv Mater 2013;25: 6334-65.

[8]

Pavelko A, Shilkina L, Reznichenko L. J Adv Dielectr 2020;10: 2060011.

[9]

Jiang C, Ma C, Luo Q, Liu K, Qin L, Wu Z, Cao W, Chen Y. J Adv Dielectr 2019;9: 1950005.

[10]

Fu DS, Endo M, Taniguchi H, Taniyama T, Itoh M. Appl Phys Lett 2007;90: 252907.

[11]

Francombe MH, Lewis B. Acta Crystallogr 1958;11: 175-8.

[12]

Kania A, Roleder K. Lukaszewski M 1984;52: 265-9.

[13]

Yashima M, Matsuyama S, Sano R, Itoh M, Tsuda K, Fu DS. Chem Mater 2011;23: 1643-5.

[14]

Levin I, Krayzman V, Woicik JC, Karapetrova J, Proffen T, Tucker MG, Reaney IM. Phys Rev B 2009;79: 104113.

[15]

Sciau P, Kania A, Dkhil B, Suard E, Ratuszna A. J Phys Condens Matter 2004;16: 2795-810.

[16]

Tian Y, Jin L, Zhang HF, Xu Z, Wei XY, Politova ED, Stefanovich SY, Tarakina NV, Abrahams I, Yan HX. J Mater Chem 2016;4: 17279-87.

[17]

Zhao L, Liu Q, Gao J, Zhang SJ, Li JF. Adv Mater 2017;29: 1701824.

[18]

Tian Y, Jin L, Zhang HF, Xu Z, Wei XY, Viola G, Abrahams I, Yan HX. J Mater Chem 2017;5: 17525-31.

[19]

Tian Y, Jin L, Hu QY, Yu K, Zhuang YY, Viola G, Abrahams I, Xu Z, Wei XY, Yan HX. J Mater Chem 2019;7: 834-42.

[20]

Yan ZN, Zhang D, Zhou XF, Qi H, Luo H, Zhou KC, Abrahams I, Yan HX. J Mater Chem 2019;7: 10702-11.

[21]

Gao J, Zhang YC, Zhao L, Lee KY, Liu Q, Studer A, Hinterstein M, Zhang SJ, Li JF. J Mater Chem 2019;7: 2225-32.

[22]

Luo NN, Han K, Zhuo FP, Liu LJ, Chen XY, Peng BL, Wang XP, Feng Q, Wei YZ. J Mater Chem C 2019;7: 4999-5008.

[23]

Li S, Nie HC, Wang GS, Xu CH, Liu NT, Zhou MX, Cao F, Dong XL. J Mater Chem C 2019;7: 1551-60.

[24]

Han K, Luo NN, Mao SF, Zhuo FP, Chen XY, Liu LJ, Hu CZ, Zhou HF, Wang XF, Wei YZ. J Materiomics 2019;5: 597-605.

[25]

Shi P, Wang X, Lou X, Zhou C, Liu Q, He L, Yang S, Zhang X. J Alloys Compd 2021;877: 160162.

[26]

Luo N, Han K, Zhuo F, Xu C, Zhang G, Liu L, Chen X, Hu C, Zhou H, Wei Y. J Mater Chem 2019;7: 14118-28.

[27]

Gao J, Liu Q, Dong J, Wang X, Zhang S, Li JF. ACS Appl Mater Interfaces 2020;12: 6097-104.

[28]

Kania A, Miga S. Mater Sci Eng B 2001;86: 128-33.

[29]

Kania A, Kwapulinski J. J Phys Condens Matter 1999;11: 8933-46.

[30]

Kania A. J Phys D Appl Phys 2001;34: 1447-55.

[31]

Li C, Soh KCK, Wu P. J Alloys Compd 2004;372: 40-8.

[32]

Shannigrahi SR, Tay FEH, Yao K, Choudhary RNP. J Eur Ceram Soc 2004;24: 163-70.

[33]

Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, Xu Z, Huang Q, Liao X, Chen LQ, Shrout TR, Zhang S. Nat Mater 2018;17: 349-54.

[34]

Karimi S, Reaney IM, Han Y, Pokorny J, Sterianou I. J Mater Sci 2009;44: 5102-12.

[35]

Ye J, Wang G, Chen X, Dong X. J Materiomics 2021;7: 339-46.

[36]

Shannon RD. Acta Crystallogr A 1976;32: 751-67.

[37]

Niranjan MK, Asthana S. Solid State Commun 2012;7: 1707-10.

[38]

Tunkasiri T, Rujijanagul G. J Mater Sci Lett 1996;15: 1767-9.

[39]

Young AL, Hilmas GE, Zhang SC, Schwartz RW. J Mater Sci 2007;42: 5613-9.

[40]

Zhang GF, Liu HX, Yao ZH, Cao MH, Hao H. J Mater Sci Mater Electron 2015;26: 2726-32.

[41]

Neusel C, Schneider GA. J Mech Phys Solid 2014;63: 201-13.

[42]

Lukaszewski M, Pawelczyk M, Handerek J, Kania A. Phase Transitions 1983;3: 247-57.

[43]

Lukaszewski M, Kania A, Ratuszna A. J Cryst Growth 1980;48: 493-5.

[44]

Pawelczyk M. Phase Transitions 1987;8: 273-92.

[45]

Petzelt J, Kamba S, Buixaderas E, Bovtun V, Zikmund Z, Kania A, Koukal V, Pokorny J, Polivka J, Pashkov V, Komandin G, Volkov A. Ferroelectrics 1999;223: 235-46.

[46]

Tian Y, Li J, Hu Q, Jin L, Yu K, Li J, Politova ED, Stefanovich SY, Xu Z, Wei X. J Mater Chem C 2019;7: 1028-34.

[47]

Fletcher NH, Hilton AD, Ricketts BW. J Phys D Appl Phys 1996;29: 253-8.

[48]

Zhao L, Gao J, Liu Q, Zhang S, Li JF. ACS Appl Mater Interfaces 2018;10: 819-26.

[49]

Shen Z, Wang X, Luo B, Li L. J Mater Chem 2015;3: 18146-53.

[50]

Luo L, Wang B, Jiang X, Li W. J Mater Sci 2014;49: 1659-65.

[51]

Wu L, Wang X, Li L. RSC Adv 2016;6: 14273-82.

[52]

Zheng D, Zuo R. J Eur Ceram Soc 2017;37: 413-8.

[53]

Wang T, Jin L, Li CC, Hu QY, Wei XY. J Am Ceram Soc 2015;98: 559-66.

[54]

Chen P, Chu B. J Eur Ceram Soc 2016;36: 81-8.

[55]

Tang W, Xu Q, Liu H, Yao Z, Hao H, Cao M. J Mater Sci Mater Electron 2016;27: 6526-34.

[56]

Shao T, Du H, Ma H, Qu S, Wang J, Wei XY, Xu Z. J Mater Chem 2017;5: 554-63.

[57]

Wang T, Jin L, Tian Y, Shu L, Hu QY, Wei XY. Mater Lett 2014;137: 79-81.

[58]

Yuan QB, Yao F, Wang YF, Ma R, Wang H. J Mater Chem C 2017;5: 9552-8.

[59]

Ding J, Liu Y, Lu Y, Qian H, Gao H, Chen H, Ma C. Mater Lett 2014;114: 107-10.

[60]

Zhao L, Liu Q, Zhang S, Li JF. J Mater Chem C 2016;4: 8380-4.

[61]

Han K, Luo NN, Jing Y, Wang X, Peng B, Liu LJ, Hu CZ, Zhou HF, Wei YZ, Chen XY, Feng Q. Ceram Int 2019;45: 5559-65.

[62]

Mao S, Luo N, Han K, Feng Q, Chen X, Peng B, Liu L, Hu C, Zhou H, Toyohisa F, Wei Y. J Mater Sci Mater Electron 2020;31: 7731-41.

[63]

Luo N, Han K, Cabral MJ, Liao X, Zhang S, Liao C, Zhang G, Chen X, Feng Q, Li JF, Wei YZ. Nat Commun 2020;11: 1-10.

[64]

Han K, Luo N, Mao S, Zhuo F, Liu L, Peng B, Chen X, Hu C, Zhou H, Wei Y. J Mater Chem 2019;7: 26293-301.

[65]

Lu Z, Bao W, Wang G, Sun SK, Li L, Li J, Yang H, Ji H, Feteira A, Li D, Xu F, Kleppe AK, Wang D, Liu SY, Reaney IM. Nano Energy 2021;79: 105423.

Journal of Materiomics
Pages 266-273
Cite this article:
Li J, Jin L, Tian Y, et al. Enhanced energy storage performance under low electric field in Sm3+ doped AgNbO3 ceramics. Journal of Materiomics, 2022, 8(2): 266-273. https://doi.org/10.1016/j.jmat.2021.10.005

496

Views

38

Crossref

43

Web of Science

44

Scopus

Altmetrics

Received: 15 July 2021
Revised: 13 October 2021
Accepted: 21 October 2021
Published: 27 October 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return