Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Off-stoichiometry of perovskite structural Bi0.5Na0.5TiO3 (BNT) ferroelectrics can give rise to considerable oxide-ion conductivity. The inherent structural characteristics are urgent to be resolved due to its particular sensitivity of the conduction mechanism to the nominal composition and synthesis process. Herein, a thorough study of the temperature-dependent neutron, X-ray diffraction and Raman spectrum is carried out on a series of equivalently substituted A-site deficient non-stoichiometric and pristine BNT. Phase transition and defect association are systemically investigated in these dominated rhombohedral phases at room temperature, associated with well saturated ferroelectric states. Significant structural evolution identified by Rietveld refinements and the origin of the electrical performance are clarified at elevated temperatures, focusing on the subtle distortions of ionic displacements, oxygen octahedral tilts and local chemical environments for oxygen vacancies. The ion migration ability mediated by oxygen vacancies that are not energetically favorable in BNT mainly depends on the external substitutional disorder, and is strongly affected by the dopant concentration. Together with the lone pair substitution concept, superior oxide ionic conductivity is achieved, and an alternative strategy is provided in designing BNT based oxide ion conductors.
Whittingham MS. Materials challenges facing electrical energy storage. MRS Bull 2008;33: 411-9.
Luo X, Wang J, Dooner M, Clarke J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 2015;137: 511-36.
Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J-F, Zhang S. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102: 72-108.
Lu H, Zhu Y, Yuan Y, He L, Zheng B, Zheng X, Liu C, Du H. LiFSI as a functional additive of the fluorinated electrolyte for rechargeable Li-S batteries. J Mater Sci Mater Electron 2021;32: 5898-906.
Wan T, Zhang L, Du H, Lin X, Qu B, Xu H, Li S, Chu D. Recent developments in oxide-based ionic conductors: bulk materials, nanoionics, and their memory applications. Crit Rev Solid State Mater Sci 2016;43: 47-82.
Malavasi L, Fisher CAJ, Islam MS. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev 2010;39: 4370-87.
Liu H, Du H, Zhao W, Qiang X, Zheng B, Li Y, Cao B. Fast potassium migration in mesoporous carbon with ultrathin framework boosting superior rate performance for high-power potassium storage. Energy Storage Mater 2021;40: 490-8.
Gao K, Guo X, Zheng B, Wang J, Wang L. Investigation of interface compatibility in stiff polymer/metal–organic frameworks. Mater Today Chem 2021;20: 100458.
Palneedi H, Peddigari M, Hwang G-T, Jeong D-Y, Ryu J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 2018;28: 1803665.
Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, De Lucas-Consuegra A, Valverde JL, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Baranova EA. Ionically conducting ceramics as active catalyst supports. Chem Rev 2013;113: 8192-260.
West AR. Inorganic functional materials: optimization of properties by structural and compositional control. Chem Rec 2006;6: 206-16.
Zheng T, Wu J, Xiao D, Zhu J. Recent development in lead-free perovskite piezoelectric bulk materials. Prog Mater Sci 2018;98: 552-624.
Lv X, Zhu J, Xiao D, Zhang X-x, Wu J. Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem Soc Rev 2020;49: 671-707.
Zhao C, Huang Y, Wu J. Multifunctional barium titanate ceramics via chemical modification tuning phase structure. Info 2020;2: 1163-90.
Fan P, Liu K, Ma W, Tan H, Zhang Q, Zhang L, Zhou C, Salamon D, Zhang S-T, Zhang Y, Nan B, Zhang H. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators. J Materiomics 2021;7: 508-44.
Rao R, Liu X, Wang Y, Shi J, Zhao Y, Zhang T, Du H. Crystal structure, electrical properties, and energy storage capacity of STCN modified BNT-BKT based lead-free dielectrics. ECS J Solid State Sci Technol 2021;10: 083003.
Dong G, Fan H, Liu L, Ren P, Cheng Z, Zhang S. Large electrostrain in Bi1/2Na1/2TiO3-based relaxor ferroelectrics: a case study of Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3-Bi(Ni2/3Nb1/3)O3 ceramics. J Materiomics 2021;7: 593-602.
Li M, Pietrowski MJ, De Souza RA, Zhang H, Reaney IM, Cook SN, Kilner JA, Sinclair DC. A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater 2014;13: 31-5.
Liu X, Fan H, Shi J, Li Q. Origin of anomalous giant dielectric performance in novel perovskite: Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M=Mg2+, Ga3+). Sci Rep 2015;5: 12699.
Yang F, Dean JS, Hu Q, Wu P, Pradal-Velázquez E, Li L, Sinclair DC. From insulator to oxide-ion conductor by a synergistic effect from defect chemistry and microstructure: acceptor-doped Bi-excess sodium bismuth titanate Na0.5Bi0.51TiO3.015. J Mater Chem A 2020;8: 25120-30.
Yang F, Wu P, Sinclair DC. Electrical conductivity and conduction mechanisms in (Na0.5Bi0.5TiO3)1−x(BiScO3)x (0.00 ≤ x ≤ 0.25) solid solutions. J Mater Chem C 2018;6: 11598-607.
Li M, Zhang H, Cook SN, Li L, Kilner JA, Reaney IM, Sinclair DC. Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem Mater 2015;27: 629-34.
Braga MH, Oliveira JE, Kai T, Murchison AJ, Bard AJ, Goodenough JB. Extraordinary dielectric properties at heterojunctions of amorphous ferroelectrics. J Am Chem Soc 2018;140: 17968-76.
Yu K, Tian Y, Gu R, Jin L, Ma R, Sun H, Xu Y, Xu Z, Wei X. Ionic conduction, colossal permittivity and dielectric relaxation behavior of solid electrolyte Li3xLa2/3-xTiO3 ceramics. J Eur Ceram Soc 2018;38: 4483-7.
Guillemet-Fritsch S, Valdez-Nava Z, Tenailleau C, Lebey T, Durand B, Chane-Ching JY. Colossal permittivity in ultrafine grain size BaTiO3–x and Ba0.95La0.05TiO3–x materials. Adv Mater 2008;20: 551-5.
Hu W, Liu Y, Withers RL, Frankcombe TJ, Norén L, Snashall A, Kitchin M, Smith P, Gong B, Chen H, Schiemer J, Brink F, Wong-Leung J. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat Mater 2013;12: 821-6.
Yang F, Li M, Li L, Wu P, Pradal-Velázque E, Sinclair DC. Optimisation of oxide-ion conductivity in acceptor-doped Na0.5Bi0.5TiO3 perovskite: approaching the limit? J Mater Chem A 2017;5: 21658-62.
Liu X, Fan H, Shi J, Wang L, Du H. Enhanced ionic conductivity of Ag addition in acceptor-doped Bi0.5Na0.5TiO3 ferroelectrics. RSC Adv 2016;6: 30623-7.
Liu X, Du H, Shi J, Hu H, Hao X. Ionic conduction and anomalous diffusion in Sr and Ga acceptors Co-doped bismuth sodium titanate solid solutions. ECS J Solid State Sci Technol 2018;7: N96-100.
Lu Y, López CA, Wang J, Alonso JA, Sun C. Insight into the structure and functional application of Mg-doped Na0.5Bi0.5TiO3 electrolyte for solid oxide fuel cells. J Alloys Compd 2018;752: 213-9.
Yang F, Li M, Li L, Wu P, Pradal-Velázquez E, Sinclair DC. Defect chemistry and electrical properties of sodium bismuth titanate perovskite. J Mater Chem A 2018;6: 5243-54.
Shi J, Liu X, Tian W. Structure evolution and ferroelectric properties in stoichiometric Bi0.5+xNa0.5−xTi1−0.5xO3. J Mater Sci 2019;54: 5249-55.
Koch L, Steiner S, Meyer K-C, Seo I-T, Albe K, Frömling T. Ionic conductivity of acceptor doped sodium bismuth titanate: influence of dopants, phase transitions and defect associates. J Mater Chem C 2017;5: 8958-65.
Meyer K-C, Albe K. Influence of phase transitions and defect associates on the oxygen migration in the ion conductor Na1/2Bi1/2TiO3. J Mater Chem A 2017;5: 4368-75.
Dawson JA, Chen H, Tanaka I. Crystal structure, defect chemistry and oxygen ion transport of the ferroelectric perovskite, Na0.5Bi0.5TiO3: insights from first-principles calculations. J Mater Chem A 2015;3: 16574-82.
He X, Mo Y. Accelerated materials design of Na0.5Bi0.5TiO3 oxygen ionic conductors based on first principles calculations. Phys Chem Chem Phys 2015;17: 18035-44.
Islam MS, Davies RA. Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 2004;14: 86.
Ishihara T, Matsuda H, Takita Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 1994;116: 3801-3.
Khan MS, Islam MS, Bates DR. Dopant substitution and ion migration in the LaGaO3-based oxygen ion conductor. J Phys Chem B 1998;102: 3099-104.
Tealdi C, Mustarelli P. Improving oxygen transport in perovskite-type LaGaO3 solid electrolyte through strain. J Phys Chem C 2014;118: 29574-82.
Aksel E, Forrester JS, Jones JL, Thomas PA, Page K, Suchomel MR. Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3. Appl Phys Lett 2011;98: 152901.
Lacorre P, Goutenoire F, Bohnke O, Retoux R. Designing fast oxide-ion conductors based on La2Mo2O9. Nature 2000;404: 856-8.
Liu X, Xu X, Du H. Electrical properties of La2Mo1.98Nb0.02O8.99 oxide ionic conductors prepared by tape casting. J Mater Sci Technol 2018;34: 2368-70.
Lacorre P. The LPS concept, a new way to look at anionic conductors. Solid State Sci 2000;2: 755.
Liu X, Fan H, Shi J, Dong G, Li Q. High oxide ion conducting solid electrolytes of bismuth and niobium co-substituted La2Mo2O9. Int J Hydrogen Energy 2014;39: 17819-27.
Jones GO, Thomas PA. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr B 2002;58: 168-78.
Rao BN, Datta R, Chandrashekaran S, Mishra DK, Sathe V, Senyshyn A, Ranjan R. Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3. Phys Rev B 2013;88: 224103.
Levin I, Reaney IM. Nano- and mesoscale structure of Na1\2Bi1\2TiO3: a TEM perspective. Adv Funct Mater 2012;22: 3445-52.
Keeble DS, Barney ER, Keen DA, Tucker MG, Kreisel J, Thomas PA. Bifurcated polarization rotation in bismuth-based piezoelectrics. Adv Funct Mater 2013;23: 185-90.
Dorcet V, Trolliard G, Boullay P. Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part Ⅰ: first order rhombohedral to orthorhombic phase transition. Chem Mater 2008;20: 5061-73.
Trolliard G, Dorcet V. Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part Ⅱ: second order orthorhombic to tetragonal phase transition. Chem Mater 2008;20: 5074-82.
Liu X, Shi J, Zhu F, Du H, Li T, Liu X, Lu H. Ultrahigh energy density and improved discharged efficiency in bismuth sodium titanate based relaxor ferroelectrics with A-site vacancy. J Materiomics 2018;4: 202-7.
Shi J, Fan H, Liu X, Bell AJ. Large electrostrictive strain in (Bi0.5Na0.5)TiO3-BaTiO3-(Sr0.7Bi0.2)TiO3 solid solutions. J Am Ceram Soc 2014;97: 848-53.
Shi J, Fan H, Liu X, Li Q. Giant strain response and structure evolution in (Bi0.5Na0.5)0.945−x(Bi0.2Sr0.7□0.1)xBa0.055TiO3 ceramics. J Eur Ceram Soc 2014;34: 3675-83.
Li T, Liu C, Ke X, Liu X, He L, Shi P, Ren X, Wang Y, Lou X. High electrostrictive strain in lead-free relaxors near the morphotropic phase boundary. Acta Mater 2020;182: 39-46.
Shi J, Zhao Y, Dong R, Tian W, Liu X. Polarization enhancement in Fe doped BNT based relaxors using Bi compensation. J Alloys Compd 2022;889: 161720.
Reichmann K, Feteira A, Li M. Bismuth sodium titanate based materials for piezoelectric actuators. Materials 2015;8: 8467-95.
Ranjan R, Kothai V, Garg R, Agrawal A, Senyshyn A, Boysen H. Degenerate rhombohedral and orthorhombic states in Ca-substituted Na0.5Bi0.5TiO3. Appl Phys Lett 2009;95: 042904.
Zhang H, Ramadan AHH, De Souza RA. Atomistic simulations of ion migration in sodium bismuth titanate (NBT) materials: towards superior oxide-ion conductors. J Mater Chem A 2018;6: 9116-23.
Irvine JTS, Sinclair DC, West AR. Electroceramics: characterization by impedance spectroscopy. Adv Mater 1990;2: 132-8.
Guo X, Waser R. Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci 2006;51: 151-210.
Liu X, Zhao Y, Shi J, Du H, Xu X, Lu H, Che J, Li X. Improvement of dielectric and ferroelectric properties in bismuth sodium titanate based relaxors through Bi non-stoichiometry. J Alloys Compd 2019;799: 231-8.
Shi J, Fan H, Liu X, Ma Y, Li Q. Bi deficiencies induced high permittivity in lead-free BNBT–BST high-temperature dielectrics. J Alloys Compd 2015;627: 463-7.
Jo W, Daniels J, Damjanovic D, Kleemann W, Rödel Jr. Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3. Appl Phys Lett 2013;102: 192903.
Schütz D, Deluca M, Krauss W, Feteira A, Jackson T, Reichmann K. Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv Funct Mater 2012;22: 2285-94.
Luo L, Ge W, Li J, Viehland D, Farley C, Bodnar R, Zhang Q, Luo H. Raman spectroscopic study of Na1/2Bi1/2TiO3-x%BaTiO3 single crystals as a function of temperature and composition. J Appl Phys 2011;109: 113507.
Kreisel J, Glazer AM, Bouvier P, Lucazeau G. High-pressure Raman study of a relaxor ferroelectric: the Na0.5Bi0.5TiO3 perovskite. Phys Rev B 2001;63: 174106.
Shi J, Fan H, Liu X, Li Q. Defect-dipole alignment and strain memory effect in poled Li doped (Bi0.5Na0.4K0.1)0.98Ce0.02TiO3 ceramics. J Mater Sci Mater Electron 2015;26: 9409-13.
De Souza RA, Martin M. An atomistic simulation study of oxygen-vacancy migration in perovskite electrolytes based on LaGaO3. Monatsh Chem 2009;140: 1011-5.
Schie M, Waser R, De Souza RA. A simulation study of oxygen-vacancy behavior in strontium titanate: beyond nearest-neighbor interactions. J Phys Chem C 2014;118: 15185-92.
Lu Y, López CA, Wang J, Alonso JA, Sun C. Insight into the structure and functional application of Mg-doped Na0.5Bi0.5TiO3 electrolyte for solid oxide fuel cells. J Alloys Compd 2018;752: 213-9.
Ritzmann AM, Muñoz-García AB, Pavone M, Keith JA, Carter EA. Ab initio DFT+U analysis of oxygen vacancy formation and migration in La1-xSrxFeO3-δ (x= 0, 0.25, 0.50). Chem Mater 2013;25: 3011-9.
Dorcet V, Trolliard G. A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3. Acta Mater 2008;56: 1753-61.
Lin Y, Fang S, Su D, Brinkman KS, Chen F. Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors. Nat Commun 2015;6: 6824.
Gregori G, Merkle R, Maier J. Ion conduction and redistribution at grain boundaries in oxide systems. Prog Mater Sci 2017;89: 252-305.
Xu X, Liu Y, Wang J, Isheim D, Dravid VP, Phatak C, Haile SM. Variability and origins of grain boundary electric potential detected by electron holography and atom-probe tomography. Nat Mater 2020;19: 887-93.
Lee W, Jung HJ, Lee MH, Kim Y-B, Park JS, Sinclair R, Prinz FB. Oxygen surface exchange at grain boundaries of oxide ion conductors. Adv Funct Mater 2012;22: 965-71.
Li Z-T, Liu H, Thong H-C, Xu Z, Zhang M-H, Yin J, Li J-F, Wang K, Chen J. Enhanced temperature stability and defect mechanism of BNT-based lead-free piezoceramics investigated by a quenching process. Adv Electron Mater 2018;5: 1800756.
Liu X, Rao R, Shi J, He J, Zhao Y, Liu J, Du H. Effect of oxygen vacancy and A-site-deficiency on the dielectric performance of BNT-BT-BST relaxors. J Alloys Compd 2021;875: 159999.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).