AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Novel lead-free NaNbO3-based relaxor antiferroelectric ceramics with ultrahigh energy storage density and high efficiency

Jie JiangaXiongjie LibLing LiaShun GuoaJi Zhanga( )Jing Wangb( )Heguo ZhuaYiping WangbShan-Tao Zhangc
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Science & Jiangsu Key Laboratory of Artificial Functional Materials & Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

The development of environmentally friendly ceramics for electrostatic energy storage has drawn growing interest due to the wide application in high power and/or pulsed power electronic systems. However, it is difficult to simultaneously achieve ultrahigh recoverable energy storage density (Wrec > 8 J/cm3) and high efficiency (η > 80 %), which restricts their application in the miniaturized, light weight and easy integrated electronic devices. Herein, the novel NaNbO3-(Bi0.8Sr0.2)(Fe0.9Nb0.1)O3 relaxor antiferroelectric ceramics, which integrates the merits of antiferroelectrics and relaxors, are demonstrated to exhibit stabilized antiferroelectric phase and enhanced dielectric relaxor behavior. Of particular importance is that the 0.88NN-0.12BSFN ceramic achieves giant electric breakdown strength Eb = 98.3 kV/mm, ultrahigh Wrec = 16.5 J/cm3 and high η = 83.3 %, as well as excellent frequency, cycling and thermal reliability simultaneously. The comprehensive energy storage performance of NN-BSFN not only outperforms state-of-the-art dielectric ceramics by comparison, but also displays outstanding potential for next-generation energy storage capacitors.

References

[1]

Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J-F, Zhang S. Prog Mater Sci 2019;102: 72-108.

[2]

Wang G, Lu Z, Li Y, Li L, Ji H, Feteira A, Zhou D, Wang D, Zhang S, Reaney IM. Chem Rev 2021;121: 6124-72.

[3]

Yao F-Z, Yuan Q, Wang Q, Wang H. Nanoscale 2020;12: 17165-84.

[4]

Yang Z, Du H, Jin L, Poelman D. J Mater Chem A 2021;9: 18026-85.

[5]

Li J, Shen Z, Chen X, Yang S, Zhou W, Wang M, Wang L, Kou Q, Liu Y, Li Q, Xu Z, Chang Y, Zhang S, Li F. Nat Mater 2020;19: 999-1005.

[6]

Qi H, Xie A, Tian A, Zuo R. Adv. Energy Mater. 2020;10: 1903338.

[7]

Ge G, Huang K, Wu S, Yan F, Li X, Shen B, Zhai J. Energy Stor. Mater. 2021;35: 114-21.

[8]

Zhang Y, Liu P, Kandula KR, Li W, Shen M, Qin Y, Zhang H, Zhang G. J Eur Ceram Soc 2021;41: 360-7.

[9]

Huang K, Ge G, Yan F, Shen B, Zhai J. Adv. Electron. Mater. 2020;6: 1901366.

[10]

Yang D, Gao J, Shu L, Liu Y-X, Yu J, Zhang Y, Wang X, Zhang B-P, Li J-F. J Mater Chem A 2020;8: 23724-37.

[11]

Zhao L, Liu Q, Gao J, Zhang S, Li J-F. Adv Mater 2017;29: 1701824.

[12]

Luo N, Han K, Cabral MJ, Liao X, Zhang S, Liao C, Zhang G, Chen X, Feng Q, Li J-F, Wei Y. Nat Commun 2020;11: 4824.

[13]

Li S, Hu T, Nie H, Fu Z, Xu C, Xu F, Wang G, Dong X. Energy Stor. Mater. 2021;34: 417-26.

[14]

Lu Z, Bao W, Wang G, Sun S-K, Li L, Li J, Yang H, Ji H, Feteira A, Li D, Xu F, Kleppe AK, Wang D, Liu S-Y, Reaney IM. Nanomater Energy 2021;79: 105423.

[15]

Koruza J, Groszewicz P, Breitzke H, Buntkowsky G, Rojac T, Malič B. Acta Mater 2017;126: 77-85.

[16]

Mishra SK, Choudhury N, Chaplot SL, Krishna PSR, Mittal R. Phys Rev B 2007;76: 024110.

[17]

Zuo R, Fu J, Qi H. Acta Mater 2018;161: 352-9.

[18]

Zhang M-H, Fulanović L, Egert S, Ding H, Groszewicz PB, Kleebe H-J, MolinaLuna L, Koruza J. Acta Mater 2020;200: 127-35.

[19]

Shimizu H, Guo H, Reyes-Lillo SE, Mizuno Y, Rabe KM, Randall CA. Dalton Trans 2015;44: 10763-72.

[20]

Qi H, Zuo R, Xie A, Fu J, Zhang D. J Eur Ceram Soc 2019;39: 3703-9.

[21]

Li F, Jin L, Xu Z, Zhang S. Appl Phys Rev 2014;1: 011103.

[22]

Li F, Zhang S, Damjanovic D, Chen L-Q, Shrout TR. Adv Funct Mater 2018;28: 1801504.

[23]

Yang Z, Du H, Jin L, Hu Q, Wang H, Li Y, Wang J, Gao F, Qu S. J Mater Chem A 2019;7: 27256-66.

[24]

Qi H, Zuo R. J Mater Chem A 2019;7: 3971-8.

[25]

Qi H, Zuo R, Xie A, Tian A, Fu J, Zhang Y, Zhang S. Adv Funct Mater 2019;29: 1903877.

[26]

Zhou M, Liang R, Zhou Z, Dong X. J Mater Chem A 2018;6: 17896-904.

[27]

Krauss W, Schütz D, Mautner FA, Feteira A, Reichmann K. J Eur Ceram Soc 2010;30: 1827-32.

[28]

Qi H, Xie A, Fu J, Zuo R. Acta Mater 2021;208: 116710.

[29]

Chen J, Qi H, Zuo R. ACS Appl Mater Interfaces 2020;12: 32871-9.

[30]

Fu J, Zuo R. J Appl Phys 2012;112: 104114.

[31]

Yang Q, Zhu M, Wei Q, Zhang M, Zheng M, Hou Y. Chem Eng J 2021;414: 128769.

[32]

Shi J, Chen X, Li X, Sun J, Sun C, Pang F, Zhou H. J Mater Chem C 2020;8: 3784-94.

[33]

Wang G, Lu Z, Yang H, Ji H, Mostaed A, Li L, Wei Y, Feteira A, Sun S, Sinclair DC, Wang D, Reaney IM. J Mater Chem A 2020;8: 11414-23.

[34]

Chen H, Shi J, Chen X, Sun C, Pang F, Dong X, Zhang H, Zhou H. J Mater Chem A 2021;9: 4789-99.

[35]

Yang L, Kong X, Cheng Z, Zhang S. ACS Appl Mater Interfaces 2020;12: 32834-41.

[36]

Tian A, Zuo R, Qi H, Shi M. J Mater Chem A 2020;8: 8352-9.

[37]

Dong X, Li X, Chen X, Chen H, Sun C, Shi J, Pang F, Zhou H. J. Materiomics 2021;7: 629-39.

[38]

Jiang J, Meng X, Li L, Zhang J, Guo S, Wang J, Hao X, Zhu H, Zhang S-T. Chem Eng J 2021;422: 130130.

[39]

Yan F, Zhou X, He X, Bai H, Wu S, Shen B, Zhai J. Nanomater Energy 2020;75: 105012.

[40]

Yan F, Huang K, Jing T, Zhou X, Shi Y, Ge G, Shen B, Zhai J. Energy Stor. Mater. 2020;30: 392-400.

[41]

Huang J, Qi H, Gao Y, Xie A, Zhang Y, Li Y, Wang S, Zuo R. Chem Eng J 2020;398: 125639.

[42]

Huang Y, Li F, Hao H, Xia F, Liu H, Zhang S. J. Materiomics 2019;5: 385-93.

[43]

Qiao X, Zhang F, Wu D, Chen B, Zhao X, Peng Z, Ren X, Liang P, Chao X, Yang Z. Chem Eng J 2020;388: 124158.

[44]

Yuan Q, Yao F-Z, Cheng S-D, Wang L, Wang Y, Mi S-B, Wang Q, Wang X, Wang H. Adv Funct Mater 2020;30: 2000191.

[45]

Dai Z, Xie J, Liu W, Wang X, Zhang L, Zhou Z, Li J, Ren X. ACS Appl Mater Interfaces 2020;12: 30289-96.

[46]

Dong X, Li X, Chen X, Wu J, Zhou H. Chem Eng J 2021;409: 128231.

[47]

Yuan Q, Li G, Yao F-Z, Cheng S-D, Wang Y, Ma R, Mi S-B, Gu M, Wang K, Li J-F, Wang H. Nanomater Energy 2018;52: 203-10.

[48]

Hu Q, Tian Y, Zhu Q, Bian J, Jin L, Du H, Alikin DO, Shur VY, Feng Y, Xu Z, Wei X. Nanomater Energy 2020;67: 104264.

[49]

Huang W, Chen Y, Li X, Wang G, Liu N, Li S, Zhou M, Dong X. Appl Phys Lett 2018;113: 203902.

[50]

Li Q, Ji S, Wang D, Zhu J, Li L, Wang W, Zeng M, Hou Z, Gao X, Lu X, Li Q, Liu JM. J Eur Ceram Soc 2021;41: 387-93.

[51]

Liu N, Liang R, Zhou Z, Dong X. J Mater Chem C 2018;6: 10211-7.

[52]

Gao X, Li Y, Chen J, Yuan C, Zeng M, Zhang A, Gao X, Lu X, Li Q, Liu J-M. J Eur Ceram Soc 2019;39: 2331-8.

[53]

Lu Z, Wang G, Bao W, Li J, Li L, Mostaed A, Yang H, Ji H, Li D, Feteira A, Xu F, Sinclair DC, Wang D, Liu S-Y, Reaney IM. Energy Environ Sci 2020;13: 2938-48.

[54]

Yan F, Shi Y, Zhou X, Zhu K, Shen B, Zhai J. Chem Eng J 2021;417: 127945.

[55]

Yan Z, Zhang D, Zhou X, Qi H, Luo H, Zhou K, Abrahams I, Yan H. J Mater Chem A 2019;7: 10702-11.

[56]

Gao J, Liu Q, Dong J, Wang X, Zhang S, Li J-F. ACS Appl Mater Interfaces 2020;12: 6097-104.

[57]

Shao T, Du H, Ma H, Qu S, Wang J, Wang J, Wei X, Xu Z. J Mater Chem A 2017;5: 554-63.

[58]

Yang Z, Gao F, Du H, Jin L, Yan L, Hu Q, Yu Y, Qu S, Wei X, Xu Z, Wang Y-J. Nanomater Energy 2019;58: 768-77.

[59]

Ren X, Jin L, Peng Z, Chen B, Qiao X, Wu D, Li G, Du H, Yang Z, Chao X. Chem Eng J 2020;390: 124566.

[60]

Chen B, Tian Y, Lu J, Wu D, Qiao X, Liang P, Du H, Peng Z, Ren X, Chao X, Yang Z. J Eur Ceram Soc 2020;40: 2936-44.

[61]

Wang X, Huan Y, Zhao P, Liu X, Wei T, Zhang Q, Wang X. J. Materiomics 2021;7: 780-9.

[62]

Huan Y, Wei T, Wang X, Liu X, Zhao P, Wang X. Chem Eng J 2021;425: 129506.

Journal of Materiomics
Pages 295-301
Cite this article:
Jiang J, Li X, Li L, et al. Novel lead-free NaNbO3-based relaxor antiferroelectric ceramics with ultrahigh energy storage density and high efficiency. Journal of Materiomics, 2022, 8(2): 295-301. https://doi.org/10.1016/j.jmat.2021.09.007

457

Views

50

Crossref

63

Web of Science

66

Scopus

Altmetrics

Received: 02 August 2021
Revised: 16 September 2021
Accepted: 26 September 2021
Published: 29 September 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return