AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers

Huibin Zhanga,1Tingting Liua,d,1Zehao HuangaJunye Chengb( )Honghan WangaDeqing Zhanga( )Xuewei BaaGuangping ZhengbMing YancMaosheng Caod( )
School of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Department of Materials Science and Engineering, And Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Southern University of Science and Technology, Shenzhen 518055, China
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

]]>

1 These authors contribute equally to this work.

Show Author Information

Graphical Abstract

Abstract

Flexible and wearable electromagnetic interference (EMI) shielding material is one of the current research focuses in the field of EMI shielding. In this work, for the first time, WS2-carbon fiber (WS2-CF) composites are synthesized by implanting WS2, which has a multiphase structure and a large number of defects, onto the surface of carbon fiber (CF) by using a simple one-step hydrothermal method, and are applied to protect electronic devices from EMI. It is found that the EMI shielding performance of WS2-CF is significantly improved, especially for those at S— and C-bands. At 2 GHz, the EMI shielding efficiency could reach 36.0 dB at a typical thickness of 3.00 mm of the composite, which is much better than that of pure CF (25.5 dB). Besides paving a novel avenue to optimize the electromagnetic shielding performance of flexible and wearable CF-based EMI shielding materials, which have great potential in the practical application for EMI shielding, this work provides a new paradigm for the design and synthesis of EMI shielding materials which have a broad application prospect.

References

[1]

Wang Y, Gao Y, Yue T, Chen X, Wang M. Appl Surf Sci 2021;563: 150255.

[2]

Cheng JY, Gao LF, Li T, Mei S, Wang C, Wen B, Huang WC, Li C, Zheng GP, Wang H, Zhang H. Nano-Micro Lett 2020;12(1): 179.

[3]

Ghosh S, Ganguly S, Maruthi A, Jana S, Remanan S, Das P, Das TK, Ghosh SK, Das NC. Mater. Today Commun. 2020;24: 100989.

[4]

Peng Y, Hou YJ, Wu Q, Zhu Y, Huang GS, Ran QC, Wu JR. Carbon 2020;166: 56-63.

[5]

Chai J, Cheng J, Zhang D, Xiong Y, Yang X, Ba X, Ullah S, Zheng G, Yan M, Cao M. J Alloys Compd 2020;829: 154531.

[6]

Zhang D, Cheng J, Chai J, Deng J, Ren R, Su Y, Wang H, Ma C, Lee C, Zhang W, Zheng G, Cao M. J Alloys Compd 2018;740: 1067-76.

[7]

Cai J, Tang X, Chen X, Wang M. Compos Appl Sci Manuf 2021;140: 106188.

[8]

Meng F, McKechnie J, Turner T, Wong KH, Pickering SJ. Environ Sci Technol 2017;51: 12727-36.

[9]

Yang S, Cheng Y, Xiao X, Pang H. Chem Eng J 2020;384: 123294.

[10]

Hyun JK, Sung HK, Sangmoon P. Materials 2018;11: 2344.

[11]

Junior M, Marcuzzo J, Pinheiro B, Lopes B, Oliveira A, Matsushima J, Baldan M. J Mater Sci Technol 2019;8: 4040-7.

[12]

Chen L, Yin X, Fan X, Chen M, Ma X, Cheng L, Zhang L. Carbon 2015;95: 10-9.

[13]

Zhang DQ, Liu TT, Shu JC, Liang S, Wang XX, Cheng JY, Wang H, Cao MS. ACS Appl Mater Interfaces 2019;11: 26807-16.

[14]

Joshi A, Bajaj A, Singh R, Anand A, Alegaonkar PS, Datar S. Compos B Eng 2015;69: 472-7.

[15]

Zhang D, Liang S, Chai J, Liu T, Yang X, Wang H, Cheng J, Zheng G, Cao M. J Phys Chem Solid 2019;134: 77-82.

[16]

Iqbal A, Shahzad F, Hantanasirisakul K, Kim MK, Kwon J, Hong J, Kim H, Kim D, Gogotsi Y, Koo CM. Science 2020;369: 446-50.

[17]

Chen X, Gu Y, Liang J, Bai M, Wang S, Li M, Zhang Z. Compos. Part A Appl Sci Manuf 2020;139: 106099.

[18]

Cheng J, Zhang H, Xiong Y, Gao L, Wen B, Raza H, Wang H, Zheng G, Zhang D, Zhang H. J. Materiomics 2021. https://doi.org/10.1016/j.jmat.2021.02.017.

[19]

Zhang D, Liu T, Cheng J, Chai J, Yang X, Wang H, Zheng G, Cao M. Nanotechnology 2019;30(44): 445708.

[20]

Wang S, Zhang Di, Li B, Zhang C, Du Z, Yin H, Bi X, Yang S. Adv. Energy Mater. 2018;8: 1801345.

[21]

Zhang D, Xiong Y, Cheng J, Chai J, Liu T, Ba X, Ullah S, Zheng G, Yan M, Cao M. Sci Bull 2020;65: 138-46.

[22]

Zhang D, Wang H, Cheng J, Han C, Yang X, Xu J, Shan G, Zheng G, Cao M. Appl Surf Sci 2020;528: 147052.

[23]

Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Nano Lett 2011;11: 5111-6.

[24]

Geng P, Zheng S, Tang H, Zhu R, Zhang L, Cao S, Xue H, Pang H. Adv. Energy Mater. 2018;8: 1703259.

[25]

Xu R, Zhang K, Xu X, He M, Lu F, Su B. Adv Sci 2018;5: 1700655.

[26]

Ratha S, Rout CS. ACS Appl Mater Interfaces 2013;5: 11427-33.

[27]

Guo X, Zheng S, Zhang G, Xiao X, Li X, Xu Y, Xue H, Pang H. Energy Storage Materials 2017;9: 150-69.

[28]

Wang Y, Chen D, Yin X, Xu P, Wu F, He M. ACS Appl Mater Interfaces 2015;7: 26226-34.

[29]

Wang XX, Ma T, Shu JC, Cao MS. Chem Eng J 2018;332: 321-30.

[30]

Lin YC, Dumcenco DO, Huang YS, Suenaga K. Nat Nanotechnol 2014;9: 391-6.

[31]

Liu Q, Li X, Xiao Z, Zhou Y, Chen H, Khalil A, Xiang T, Xu J, Chu W, Wu X, Yang J, Wang C, Xiong Y, Jin C, Ajayan PM, Song L. Adv Mater 2015;27: 4837-44.

[32]

Wang X, Huang J, Li J, Cao L, Hao W, Xu Z. ACS Appl Mater Interfaces 2016;8: 23899-908.

[33]

Naeem S, Baheti V, Tunakova V, Militky J, Karthik D, Tomkova B. Carbon 2017;111: 439-47.

[34]

Mishra S, Katti P, Kumar S, Bose S. Chem Eng J 2019;357: 384-94.

[35]

Liu Y, Wang W, Wang Y, Peng X. Nanomater Energy 2014;7: 25-32.

[36]

Xiang Q, Cheng F, Lang Di. ChemSusChem 2016;9: 996-1002.

[37]

Zhang D, Liu T, Cheng J, Cao Q, Zheng G, Liang S, Wang H, Cao MS. Nano-Micro Lett 2019;11: 38.

[38]

Kim MJ, Jeon SJ, Kang TW, Ju JM, Yim D, Kim HI, Park JH, Kim JH. ACS Appl Mater Interfaces 2017;9: 12316-23.

[39]

Voiry D, Yamaguchi H, Li J, Silva R, Alves DCB, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M. Nat Mater 2013;12: 850-5.

[40]

Leong SX, Mayorga-Martinez CC, Chia X, Luxa J, Sofer Z, Pumera M. ACS Appl Mater Interfaces 2017;9: 26350-6.

[41]

Liu Z, Li N, Su C, Zhao H, Xu L, Yin Z, Li J, Du Y. Nanomater Energy 2018;50: 176-81.

[42]

Calizo I, Balandin AA, Bao W, Miao F, Lau CN. Nano Lett 2007;7: 2645-9.

[43]

Wang M, Tang X, Cai J, Wu H, Shen J, Guo S. Carbon 2021;177: 377-402.

[44]

Hong YK, Lee CY, Jeong CK, Lee DE, Kim K, Joo J. Rev Sci Instrum 2003;74: 1098-102.

[45]

Singh AP, Gupta BK, Mishra M, Govind, Chandra A, Mathur RB, Dhawan SK. Carbon 2013;56: 86-96.

[46]

Lee S, Yu S, Shahzad F, Kim W, Park C, Hong S, Koo C. Nanoscale 2017;9: 13432-40.

[47]

Joon S, Kumar R, Singh AP, Shukla R, Dhawan SK. RSC Adv 2015;5: 55059-65.

[48]

Gan W, Chen C, Giroux M, Zhong G, Goyal MM, Wang Y, Ping W, Song J, Xu S, He S, Jiao M, Wang C, Hu L. Chem Mater 2020;32: 5280-9.

[49]

Cheng J, Yang X, Dong L, Yuan Z, Wang W, Wu S, Chen S, Zheng G, Zhang W, Zhang D, Wang H. Polym Test 2017;59: 371-6.

[50]

Chen B, Jia Y, Zhang M, Li X, Yang J, Zhang X. Appl Clay Sci 2019;174: 1-9.

[51]

Liu G, Hou X, Huang Y, Shao H, Zheng Y, Wang F, Wang Q. IEEE Commun Mag 2019;57: 126-31.

[52]

Wang Y, Peng H, Li T, Shiu B, Ren H, Zhang X, Lou C, Lin J. Chem Eng J 2021;412: 128681.

[53]

Wang L, Yu X, Huang M, You W, Zeng Q, Zhang J, Liu X, Wang M, Che R. Carbon 2021;172: 516-28.

[54]

Liang LL, Song G, Liu Z, Chen JP, Xie LJ, Jia H, Kong QQ, Sun GH, Chen CM. ACS Appl Mater Interfaces 2020;12: 52208-20.

[55]

Li T, Wang Y, Peng H, Zhang X, Shiu B, Lin J, Lou C. Compos Appl Sci Manuf 2020;128: 105685.

Journal of Materiomics
Pages 327-334
Cite this article:
Zhang H, Liu T, Huang Z, et al. Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. Journal of Materiomics, 2022, 8(2): 327-334. https://doi.org/10.1016/j.jmat.2021.09.003

655

Views

65

Crossref

84

Web of Science

86

Scopus

Altmetrics

Received: 07 July 2021
Revised: 10 September 2021
Accepted: 15 September 2021
Published: 20 September 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return