AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1−x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions

Ruiyi JingaLeiyang ZhangaQingyuan HuaD.O. AlikinbV. Ya ShurbXiaoyong WeiaLin ZhangcGang Liud( )Haibo Zhange( )Li Jina( )
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia
MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
School of Materials and Energy, Southwest University, Chongqing, 400715, China
School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Owing to the complex composition architecture of these solid solutions, some fundamental issues of the classical (1−x)Bi1/2Na1/2TiO-xBi1/2K1/2TiO3 (BNT-xBKT) binary system, such as details of phase evolution and optimal Na/K ratio associated with the highest strain responses, remain unresolved. In this work, we systematically investigated the phase evolution of the BNT-xBKT binary solid solution with x ranging from 0.12 to 0.24 using not only routine X-ray diffraction and weak-signal dielectric characterization, but also temperature-dependent polarization versus electric field (P-E) and current versus electric field (I-E) curves. Our results indicate an optimal Na/K ratio of 81/19 based on high-field polarization and electrostrain characterizations. As the temperature increased above 100 °C, the x = 0.19 composition produces ultrahigh electrostrains (> 0.5%) with high thermal stability. The ultrahigh and stable electrostrains were primarily due to the combined effect of electric-field-induced relaxor-to-ferroelectric phase transition and ferroelectric-to-relaxor diffuse phase transition during heating. More specifically, we revealed the relationship between phase evolution and electrostrain responses based on the characteristic temperatures determined by both weak-field dielectric and high-field ferroelectric/electromechanical property characterizations. This work not only clarifies the phase evolution in BNT-xBKT binary solid solution, but also paves the way for future strain enhancement through doping strategies.

References

[1]

Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J. J Electroceram 2012;29:71-93. https://doi.org/10.1007/s10832-012-9742-3.

[2]

Li F, Jin L, Guo R. Appl Phys Lett 2014;105:232903. https://doi.org/10.1063/1.4904019.

[3]

Jin L, Luo W, Wang L, Tian Y, Hu Q, Hou L, Zhang L, Lu X, Du H, Wei X, Liu G, Yan Y. J Eur Ceram Soc 2019;39:277-86. https://doi.org/10.1016/j.jeurceramsoc.2018.09.019.

[4]

Hao J, Li W, Zhai J, Chen H. Mater Sci Eng R Reports 2019;135:1-57. https://doi.org/10.1016/j.mser.2018.08.001.

[5]

Jin L, Pang J, Jing R, Lan Y, Wang L, Li F, Hu Q, Du H, Guo D, Wei X, Xu Z, Zhang L, Liu G. J Alloy Compd 2019;788:1182-92. https://doi.org/10.1016/j.jallcom.2019.02.329.

[6]

Fan P, Liu K, Ma W, Tan H, Zhang Q, Zhang L, Zhou C, Salamon D, Zhang S-T, Zhang Y, Nan B, Zhang H. J Materiomics 2021;7:508-44. https://doi.org/10.1016/j.jmat.2020.11.009.

[7]

Lu X, Hou L, Jin L, Wang L, Tian Y, Yu K, Hu Q, Zhang L, Wei X. Ceram Int 2018;44:5492-99. https://doi.org/10.1016/j.ceramint.2017.12.188.

[8]

Jin L, Huo R, Guo R, Li F, Wang D, Tian Y, Hu Q, Wei X, He Z, Yan Y, Liu G. ACS Appl Mater Interfaces 2016;8:31109-19. https://doi.org/10.1021/acsami.6b08879.

[9]

Damjanovic D. Rep Prog Phys 1998;61:1267-1324. https://doi.org/10.1088/0034-4885/61/9/002.

[10]

Jin L, Qiao J, Hou L, Tian Y, Hu Q, Wang L, Lu X, Zhang L, Du H, Wei X, Liu G, Yan Y. Ceram Int 2018;44:21816-24. https://doi.org/10.1016/j.ceramint.2018.08.286.

[11]

Lu X, Wang L, Jin L, Hu Q, Tian Y, Hou L, Yu K, Zhang L, Wei X, Yan Y, Liu G. J Alloy Compd 2018;753:558-65. https://doi.org/10.1016/j.jallcom.2018.04.257.

[12]

Jin L, Qiao J, Hou L, Wang L, Zhang L, Lu X, Du H, Wei X, Yan Y, Liu G. J Alloy Compd 2019;776:599-605. https://doi.org/10.1016/j.jallcom.2018.10.307.

[13]

Zheng T, Wu J. Mater Horiz 2020;7:3011-20. https://doi.org/10.1039/D0MH01296C.

[14]

Zheng T, Wu J, Xiao D, Zhu J. Prog Mater Sci 2018;98:552-624. https://doi.org/10.1016/j.pmatsci.2018.06.002.

[15]

Li F, Wang L, Jin L, Lin D, Li J, Li Z, Xu Z, Zhang S. IEEE Trans Ultrason Ferroelectrics Freq Contr 2015;62:18-32. https://doi.org/10.1109/TUFFC.2014.006660.

[16]

Zhang S-T, Kounga AB, Aulbach E, Ehrenberg H, Rödel J. Appl Phys Lett 2007;91:112906. https://doi.org/10.1063/1.2783200.

[17]

Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D. J Appl Phys 2009;105:094102. https://doi.org/10.1063/1.3121203.

[18]

Li F, Jin L, Xu Z, Zhang S. Appl Phys Rev 2014;1:011103. https://doi.org/10.1063/1.4861260.

[19]

Lu X, Hou L, Jin L, Wang D, Hu Q, Alikin DO, Turygin AP, Wang L, Zhang L, Wei X. J Eur Ceram Soc 2018;38:3127-35. https://doi.org/10.1016/j.jeurceramsoc.2018.03.026.

[20]

Jin L, Luo W, Hou L, Tian Y, Hu Q, Wang L, Zhang L, Lu X, Du H, Wei X, Yan Y, Liu G. J Eur Ceram Soc 2019;39:295-304. https://doi.org/10.1016/j.jeurceramsoc.2018.09.005.

[21]

Jin L, Luo W, Jing R, Qiao J, Pang J, Du H, Zhang L, Hu Q, Tian Y, Wei X, Liu G, Yan Y. Ceram Int 2019;45:5518-24. https://doi.org/10.1016/j.ceramint.2018.12.009.

[22]

Yin J, Liu G, Zhao C, Huang Y, Li Z, Zhang X, Wang K, Wu J. J Mater Chem A 2019;7:13658-70. https://doi.org/10.1039/C9TA03140E.

[23]

Jin L, Qiao J, Wang L, Hou L, Jing R, Pang J, Zhang L, Lu X, Wei X, Liu G, Yan Y. J Alloy Compd 2019;784:931-8. https://doi.org/10.1016/j.jallcom.2019.01.106.

[24]

Wu B, Zhao C, Huang Y, Yin J, Wu W, Wu J. ACS Appl Mater Interfaces 2020;12:25050-7. https://doi.org/10.1021/acsami.0c06131.

[25]

Damjanovic D. J Am Ceram Soc 2005;88:2663-76. https://doi.org/10.1111/j.1551-2916.2005.00671.x.

[26]

Yang Z, Du H, Jin L, Poelman D. J Mater Chem A 2021. https://doi.org/10.1039/D1TA04504K.

[27]

Lv J, Li Q, Li Y, Tang M, Jin D, Yan Y, Fan B, Jin L, Liu G. Chem Eng J 2021;420:129900. https://doi.org/10.1016/j.cej.2021.129900.

[28]

Chu B-J, Chen D-R, Li G-R, Yin Q-R. J Eur Ceram Soc 2002;22:2115-21. https://doi.org/10.1016/S0955-2219(02)00027-4.

[29]

Daniels JE, Jo W, Rödel J, Honkimäki V, Jones JL. Acta Mater 2010;58:2103-11. https://doi.org/10.1016/j.actamat.2009.11.052.

[30]

Cheng R, Xu Z, Chu R, Hao J, Du J, Li G. J Eur Ceram Soc 2016;36:489-96. https://doi.org/10.1016/j.jeurceramsoc.2015.09.043.

[31]

Ayrikyan A, Prach O, Khansur NH, Keller S, Yasui S, Itoh M, Sakata O, Durst K, Webber KG. Acta Mater 2018;148:432-41. https://doi.org/10.1016/j.actamat.2018.02.014.

[32]

Yin J, Zhao C, Zhang Y, Wu J. Acta Mater 2018;147:70-7. https://doi.org/10.1016/j.actamat.2018.01.054.

[33]

Li T, Lou X, Ke X, Cheng S, Mi S, Wang X, Shi J, Liu X, Dong G, Fan H, Wang Y, Tan X. Acta Mater 2017;128:337-44. https://doi.org/10.1016/j.actamat.2017.02.037.

[34]

Wang F, Xu M, Tang Y, Wang T, Shi W, Leung CM. J Am Ceram Soc 2012;95:1955-9. https://doi.org/10.1111/j.1551-2916.2012.05119.x.

[35]

Seifert KTP, Jo W, Rödel J. J Am Ceram Soc 2010;93:1392-6. https://doi.org/10.1111/j.1551-2916.2009.03573.x.

[36]

Hao J, Xu Z, Chu R, Li W, Du J. J Alloy Compd 2015;647:857-65. https://doi.org/10.1016/j.jallcom.2015.06.151.

[37]

Buixaderas E, Nuzhnyy D, Vaněk P, Gregora I, Petzelt J, Porokhonskyy V, Jin L, Damjanovic D. Phase Transitions 2010;83:917-30. https://doi.org/10.1080/01411594.2010.509601.

[38]

Buixaderas E, Nuzhnyy D, Petzelt J, Jin L, Damjanovic D. Phys Rev B 2011;84:184302. https://doi.org/10.1103/PhysRevB.84.184302.

[39]

Buixaderas E, Gregora I, Savinov M, Hlinka J, Jin L, Damjanovic D, Malic B. Phys Rev B 2015;91:014104. https://doi.org/10.1103/PhysRevB.91.014104.

[40]

Damjanovic D, Klein N, Li J, Porokhonskyy V. Funct Mater Lett 2010;3:5-13. https://doi.org/10.1142/s1793604710000919.

[41]

Jin L, Porokhonskyy V, Damjanovic D. Appl Phys Lett 2010;96:242902. https://doi.org/10.1063/1.3455328.

[42]

Sasaki A, Chiba T, Mamiya Y, Otsuki E. Jpn J Appl Phys 1999;38:5564-7. https://doi.org/10.1143/jjap.38.5564.

[43]

Yoshii K, Hiruma Y, Nagata H, Takenaka T. Jpn J Appl Phys 2006;45:4493-6. https://doi.org/10.1143/jjap.45.4493.

[44]

Wang K, Hussain A, Jo W, Rödel J. J Am Ceram Soc 2012;95:2241-7. https://doi.org/10.1111/j.1551-2916.2012.05162.x.

[45]

Malik RA, Hussain A, Maqbool A, Zaman A, Ahn C-W, Rahman JU, Song T-K, Kim W-J, Kim M-H. J Am Ceram Soc 2015;98:3842-8. https://doi.org/10.1111/jace.13722.

[46]

Obilor U, Pascual-Gonzalez C, Murakami S, Reaney IM, Feteira A. Mater Res Bull 2018;97:385-92. https://doi.org/10.1016/j.materresbull.2017.09.032.

[47]

Rashad Z, Feteira A. Mater Lett 2018;222:180-2. https://doi.org/10.1016/j.matlet.2018.03.183.

[48]

Wu Y, Wang G, Jiao Z, Fan Y, Peng P, Dong X. RSC Adv 2019;9:21355-62. https://doi.org/10.1039/C9RA04069B.

[49]

Ullah A, Ahn CW, Hussain A, Lee SY, Lee HJ, Kim IW. Curr Appl Phys 2010;10:1174-81. https://doi.org/10.1016/j.cap.2010.02.006.

[50]

Fan P, Zhang Y, Xie B, Zhu Y, Ma W, Wang C, Yang B, Xu J, Xiao J, Zhang H. Ceram Int 2018;44:3211-7. https://doi.org/10.1016/j.ceramint.2017.11.092.

[51]

Liu X, Tan X. Adv Mater 2016;28:574-8. https://doi.org/10.1002/adma.201503768.

[52]

Takenaka T, Nagata H, Hiruma Y. IEEE Trans Ultrason Ferroelectrics Freq Contr 2009;56:1595-612. https://doi.org/10.1109/TUFFC.2009.1224.

[53]

Hiruma Y, Nagata H, Takenaka T. J Appl Phys 2008;104:124106. https://doi.org/10.1063/1.3043588.

[54]

Ehara Y, Novak N, Ayrikyan A, Geiger PT, Webber KG. J Appl Phys 2016;120:174103. https://doi.org/10.1063/1.4966614.

[55]

Deng A, Wu J. J Materiomics 2020;6:286-92. https://doi.org/10.1016/j.jmat.2020.03.005.

[56]

Shannon RD. Acta Cryst 1976;A32:751-67. https://doi.org/10.1107/s0567739476001551.

[57]

Hiruma Y, Yoshii K, Nagata H, Takenaka T. J Appl Phys 2008;103:084121. https://doi.org/10.1063/1.2903498.

[58]

Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe H-J, Bell AJ, Rödel J. J Appl Phys 2011;110:074106. https://doi.org/10.1063/1.3645054.

[59]

Hiruma Y, Nagata H, Takenaka T. Jpn J Appl Phys 2006;45:7409-12. https://doi.org/10.1143/jjap.45.7409.

[60]

Bokov AA, Ye ZG. J Mater Sci 2006;41:31-52. https://doi.org/10.1007/s10853-005-5915-7.

[61]

Wang H, Hu Q, Liu X, Zheng Q, Jiang N, Yang Y, Kwok KW, Xu C, Lin D. Ceram Int 2019;45:23233-40. https://doi.org/10.1016/j.ceramint.2019.08.019.

[62]

Jin L, Li F, Zhang S. J Am Ceram Soc 2014;97:1-27. https://doi.org/10.1111/jace.12773.

[63]

Zhu M, Hu H, Lei N, Hou Y, Yan H. Appl Phys Lett 2009;94:182901. https://doi.org/10.1063/1.3130736.

[64]

Wu J, Zhang H, Huang C-H, Tseng C-W, Meng N, Koval V, Chou Y-C, Zhang Z, Yan H. Nano Energy 2020;76:105037. https://doi.org/10.1016/j.nanoen.2020.105037.

[65]

Qi H, Zuo R, Zhou X, Zhang D. J Alloy Compd 2019;802:6-12. https://doi.org/10.1016/j.jallcom.2019.06.102.

[66]

Zhang X, Jiang G, Liu D, Yang B, Cao W. Ceram Int 2018;44:12869-76. https://doi.org/10.1016/j.ceramint.2018.04.097.

[67]

He H, Lu X, Li M, Wang Y, Li Z, Lu Z, Lu L. J Mater Chem C 2020;8:2411-8. https://doi.org/10.1039/C9TC04864B.

[68]

Sapper E, Novak N, Jo W, Granzow T, Rödel J. J Appl Phys 2014;115:194104. https://doi.org/10.1063/1.4876746.

[69]

Liu G, Dong J, Zhang L, Yan Y, Jing R, Jin L. J Materiomics 2020;6:677-91. https://doi.org/10.1016/j.jmat.2020.05.005.

[70]

Jin L, He Z, Damjanovic D. Appl Phys Lett 2009;95:012905. https://doi.org/10.1063/1.3173198.

[71]

Theissmann R, Schmitt LA, Kling J, Schierholz R, Schönau KA, Fuess H, Knapp M, Kungl H, Hoffmann MJ. J Appl Phys 2007;102:024111. https://doi.org/10.1063/1.2753569.

[72]

Dong G, Fan H, Liu L, Ren P, Cheng Z, Zhang S. J Materiomics 2021;7:593-602. https://doi.org/10.1016/j.jmat.2020.11.002.

[73]

Kling J, Tan X, Jo W, Kleebe H-J, Fuess H, Rödel J. J Am Ceram Soc 2010;93:2452-5. https://doi.org/10.1111/j.1551-2916.2010.03778.x.

[74]

Samara GA. J Phys Condens Matter 2003;15:R367-411. https://doi.org/10.1088/0953-8984/15/9/202.

[75]

Malik RA, Hussain A, Zaman A, Maqbool A, Rahman JU, Song TK, Kim W-J, Kim M-H. RSC Adv 2015;5:96953-64. https://doi.org/10.1039/C5RA19107F.

Journal of Materiomics
Pages 335-346
Cite this article:
Jing R, Zhang L, Hu Q, et al. Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1−x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions. Journal of Materiomics, 2022, 8(2): 335-346. https://doi.org/10.1016/j.jmat.2021.09.002

508

Views

59

Crossref

73

Web of Science

73

Scopus

Altmetrics

Received: 15 June 2021
Revised: 17 August 2021
Accepted: 09 September 2021
Published: 13 September 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return