AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Exploration about superior anti-counterfeiting ability of Sm3+ doped KSr2Nb5O15 photochromic ceramics: Origin and atomic-scale mechanism

Shuyao CaoaJiatong ZhuaQian ChenaJunting LiuaChangying WubLeilei LiaJie Xua,c( )Haixue Yand( )Feng Gaoa( )
State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, USI Institute of Intelligence Materials and Structure, NPU-QMUL Joint Research Institute of Advanced Materials and Structure, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
School of Electronics and Information, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
Show Author Information

Graphical Abstract

Abstract

Reversible luminescence modulation behavior upon the photochromic effect endows the photochromic ceramics with great potential in anti-counterfeiting and data storage applications. Here, Sm3+-doped KSr2Nb5O15 photochromic ceramics exhibit superior anti-counterfeiting ability: good covertness and considerable modulation ratio of luminescent emission intensity after photochromic reaction. The results show that the photochromism originated from oxygen and cation vacancies, which were directly identified by electron paramagnetic resonance and positron annihilation lifetime spectra. Unexpectedly, oxygen vacancies work more effectively than cation vacancies during photochromic reactions. Moreover, the extraordinary anti-counterfeiting ability was attributed to the high energy transfer rate, which was particularly caused by the short mean distance below 1 nm between the Sm3+ and vacancies. The work here has provided atomic-scale structural evidence and made a progress in understanding the photochromic origins and mechanism in color-center theory.

References

[1]

Zhang JJ, Zou Q, Tian H. Adv Mater 2013;25(3): 378-99. https://doi.org/10.1002/adma.201201521.

[2]

Irie M. Chem Rev 2000;100(5): 1685-716. https://doi.org/10.1021/cr980069d.

[3]

Bai X, Yang ZW, Zhan YH, Hu Z, Ren YT, Li MJ, Xu Z, Ulah A, Khan I, Qiu JB, Song ZG, Liu BT, Wang YH. ACS Appl Mater Interfaces 2020;12(19): 21936-43. https://doi.org/10.1021/acsami.0c05909.

[4]

Lin JF, Zhou Y, Lu QL, Wu X, Lin C, Lin TF, Xue KH, Miao XS, Sa BS, Sun ZM. J Mater Chem A 2019;7(33): 19374-84. https://doi.org/10.1039/c9ta05936a.

[5]

Zhang YY, Luo LH, Li KX, Li WP, Hou YF. J Eur Ceram Soc 2018;38(9): 3154-61. https://doi.org/10.1016/j.jeurceramsoc.2018.03.005.

[6]

Zhang Y, Liu J, Sun HQ, Peng DF, Li RH, Bulin CK, Wang XS, Zhang QW, Hao XH. J Am Ceram Soc 2018;101(6): 2305-12. https://doi.org/10.1111/jace.15389.

[7]

Wang HJ, Lin JF, Deng BY, Lin TF, Lin C, Cheng Y, Wu X, Zheng XH, Yu X. J Mater Chem C 2020;8(7): 2343-52. https://doi.org/10.1039/c9tc05899k.

[8]

Liu J, Zhang Y, Sun HQ, Zhang QW, Wang XS, Hao XH. J Lumin 2019;207: 85-92. https://doi.org/10.1016/j.jlumin.2018.11.017.

[9]

Zhang Q, Luo LH, Zhu ZL, Du P, Zhang YY. J Am Ceram Soc 2019;102(10): 6018-26. https://doi.org/10.1111/jace.16480.

[10]

Sun HQ, Liu J, Wang XS, Zhang QW, Hao XH, An SL. J Mater Chem C 2017;5(35): 9080-7. https://doi.org/10.1039/c7tc03076b.

[11]

Zhang QW, Zhang XW, Sun HQ, Li WQ, Wang XS, Hao XH, An SL. ACS Appl Mater Interfaces 2016;8(7): 4789-94. https://doi.org/10.1021/acsami.5b12262.

[12]

Zhang QW, Yue SS, Sun HQ, Wang XS, Hao XH, An SL. J Mater Chem C 2017;5(15): 3838-47. https://doi.org/10.1039/c7tc00582b.

[13]

Zhang QW, Sun HQ, Li H, Wang XS, Hao XH, Song JL, An SL. Chem Commun 2015;51(91): 16316-9. https://doi.org/10.1039/c5cc06833a.

[14]

Zhang QW, Sun HQ, Wang XS, Hao XH, An SL. ACS Appl Mater Interfaces 2015;7(45): 25289-97. https://doi.org/10.1021/acsami.5b07345.

[15]

Sun HQ, Li XF, Zhu Y, Wang XS, Zhang QW, Hao XH. J Mater Chem C 2019;7(19): 5782-91. https://doi.org/10.1039/c9tc00834a.

[16]

Zhang QW, Zhang Y, Sun HQ, Wang XS, Hao XH, An SL. J Eur Ceram Soc 2017;37(3): 955-66. https://doi.org/10.1016/j.jeurceramsoc.2016.10.005.

[17]

Li KX, Luo LH, Zhang YY, Li WP, Hou YF. ACS Appl Mater Interfaces 2018;10(48): 41525-34. https://doi.org/10.1021/acsami.8b15784.

[18]

Zhang QW, Zhang Y, Sun HQ, Geng W, Wang XS, Hao XH, An SL. ACS Appl Mater Interfaces 2016;8(50): 34581-9. https://doi.org/10.1021/acsami.6b11825.

[19]

Zhang YY, Luo LH, Li KX, Li WP, Hou YF. J Mater Chem C 2018;6(48): 13148-56. https://doi.org/10.1039/c8tc04725a.

[20]

Zhang YY, Luo LH, Li KX, Li WP, Hou YF. J Phys D: Appl Phys 2018;51(36): 365102. https://doi.org/10.1088/1361-6463/aad531.

[21]

Ren YT, Yang ZW, Li MJ, Ruan JF, Zhao JY, Qiu JB, Song ZG, Zhou DC. Adv. Optical Mater. 2019;7(15): 1900213. https://doi.org/10.1002/adom.201900213.

[22]

Wei T, Jia B, Shen LH, Zhao CZ, Wu LW, Zhang B, Tao X, Wu SC, Liang Y. J Eur Ceram Soc 2020;40(12): 4153-63. https://doi.org/10.1016/j.jeurceramsoc.2020.04.014.

[23]

Cao SY, Chen Q, Liu JT, Wu CY, Li LL, Xu J, Cheng GH, Gao F. J Eur Ceram Soc 2020;40(15): 6061-72. https://doi.org/10.1016/j.jeurceramsoc.2020.07.030.

[24]

Lanfredi S, Darie C, Bellucci FS, Colin C, Nobre MAL. Dalton Trans 2014;43(28): 10983-98. https://doi.org/10.1039/c4dt00623b.

[25]

Lima ARF, Sczancoski JC, Li MS, Longo E, Camargo ER. Ceram Int 2016;42(4): 4709-14. https://doi.org/10.1016/j.ceramint.2015.11.130.

[26]

Hasegawa Y, Nakagawa T, Kawai T. Coord Chem Rev 2010;254(21-22): 2643-51. https://doi.org/10.1016/j.ccr.2009.12.036.

[27]
Blasse G, Grabmaier BC. Luminescent materials. Springer-Verlag; 1994. p. 93.
[28]

Zhang YY, Luo LH, Li KX, Li WP. Ceram Int 2018;44(1): 1086-90. https://doi.org/10.1016/j.ceramint.2017.10.054.

[29]

Sun HQ, Zhang Y, Liu J, Peng DF, Zhang QW, Hao XH. J Am Ceram Soc 2018;101(12): 5659-74. https://doi.org/10.1111/jace.15885.

[30]

Dexter DL. J Chem Phys 1953;21(5): 836-50. https://doi.org/10.1063/1.1699044.

[31]

Mutoh K, Miyashita N, Arai K, Abe J. J Am Chem Soc 2019;141(14): 5650-4. https://doi.org/10.1021/jacs.9b01870.

[32]

Niu CH, Deng YJ. J Lumin 2018;204:528-32. https://doi.org/10.1016/j.jlumin.2018.08.051.

[33]

Dimitrov V, Sakka S. J Appl Phys 1996;79(3): 1736-40. https://doi.org/10.1063/1.360962.

[34]

Zhang QW, Liu J, Sun HQ, Wang XS, Hao XH, An SL. J Mater Chem C 2017;5(4): 807-16. https://doi.org/10.1039/c6tc04422k.

[35]

Zhu XL, Chen XM. J Am Ceram Soc 2012;95(10): 3185-91. https://doi.org/10.1111/j.1551-2916.2012.05286.x.

[36]

David C, Tunyagi A, Betzler K, Wöhlecke M. Phys Status Solidi 2007;244(6): 2127-37. https://doi.org/10.1002/pssb.200642370.

[37]

Wilde RE. J Raman Spectrosc 1991;22(6): 321-5. https://doi.org/10.1002/jrs.1250220604.

[38]
Placzek G. Handbuch der Radiologie. Leipzig: Akademie Verlagsgesellschaft; 1934.
[39]

Gu FB, Li CJ, Han DM, Wang ZH. ACS Appl Mater Interfaces 2018;10(1): 933-42. https://doi.org/10.1021/acsami.7b16832.

[40]

Harrigan WL, Michaud SE, Lehuta KA, Kittilstved KR. Chem Mater 2016;28(2): 430-3. https://doi.org/10.1021/acs.chemmater.6b00049.

[41]

Yu X, Kim B, Kim YK. ACS Catal 2013;3(11): 2479-86. https://doi.org/10.1021/cs4005776.

[42]

Li Z, Xiao C, Fan SJ, Deng Y, Zhang WS, Ye BJ, Xie Y. J Am Chem Soc 2015;137(20): 6587-93. https://doi.org/10.1021/jacs.5b01863.

[43]

Guin SN, Banerjee S, Sanyal D, Pati SK, Biswas K. Inorg Chem 2016;55(12): 6323-31. https://doi.org/10.1021/acs.inorgchem.6b00997.

[44]

Dhar J, Sil S, Dey A, Sanyal D, Ray PP. J Phys Chem C 2017;121(10): 5515-22. https://doi.org/10.1021/acs.jpcc.7b01047.

[45]

Zhang G, Zhang L, Liu Y, Liu LM, Huang CP, Liu HJ, Li JH. ACS Appl Mater Interfaces 2016;8(40): 26783-93. https://doi.org/10.1021/acsami.6b08676.

[46]

Shen BY, Chen X, Cai DL, Xiong H, Liu X, Meng CG, Han Y, Wei F. Adv Mater 2020;32(4): 1906103. https://doi.org/10.1002/adma.201906103.

Journal of Materiomics
Pages 38-46
Cite this article:
Cao S, Zhu J, Chen Q, et al. Exploration about superior anti-counterfeiting ability of Sm3+ doped KSr2Nb5O15 photochromic ceramics: Origin and atomic-scale mechanism. Journal of Materiomics, 2022, 8(1): 38-46. https://doi.org/10.1016/j.jmat.2021.06.001

555

Views

49

Crossref

64

Web of Science

64

Scopus

Altmetrics

Received: 02 March 2021
Revised: 30 April 2021
Accepted: 01 June 2021
Published: 12 June 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return