Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Thermoelectric (TE) materials are receiving increasing attention due to their ability to directly converting heat to electricity. They are used to harvest electrical energy from the wasted heat in order to increase the efficiency of global energy. Polymer-based TE materials are particularly fascinating to wearable and mobile devices due to their low density, good flexibility, and low toxicity. This review summarizes the recent breakthroughs and optimization strategies of polymer-based TE materials. Among a large number of different organic TE materials, those with remarkable TE performance are selected and divided into three categories, which are poly(3, 4-ethylenedioxythiophene) derivatives, carbon nanotube/conductive polymer composites, and inorganic semiconductive nanomaterial/polymer composites. The effect of components and structures on the power factor are presented and discussed. Finally, some challenges are described and suggestions are provided for preparing the next-generation of polymer-based materials with high TE performance.
Zeng YJ, Wu D, Cao XH, Zhou WX, Tang LM, Chen KQ. Nanoscale organic thermoelectric materials: measurement, theoretical models, and optimization strategies. Adv Funct Mater 2020;30: 1-25. https://doi.org/10.1002/adfm.201903873.
Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016;1: 1-14. https://doi.org/10.1038/natrevmats.2016.50.
McGrail BT, Sehirlioglu A, Pentzer E. Polymer composites for thermoelectric applications. Angew Chem Int Ed 2015;54: 1710-23. https://doi.org/10.1002/anie.201408431.
Zhang Q, Sun Y, Xu W, Zhu D. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 2014;26: 6829-51. https://doi.org/10.1002/adma.201305371.
Peng S, Wang D, Lu J, He M, Xu C, Li Y, Zhu S. A review on organic polymerbased thermoelectric materials. J Polym Environ 2017;25: 1208-18. https://doi.org/10.1007/s10924-016-0895-z.
He M, Qiu F, Lin Z. Towards high-performance polymer-based thermoelectric materials. Energy Environ Sci 2013;6: 1352-61. https://doi.org/10.1039/c3-e24193a.
Dargusch M, Liu W, Chen Z. Thermoelectric generators: alternative power supply for wearable electrocardiographic systems. Adv Sci 2020;7: 2001362. https://doi.org/10.1002/advs.202001362.
Hong SY, Oh JH, Park H, Yun JY, Jin SW, Sun L, Zi G, Ha JS. Polyurethane foam coated with a multi-walled carbon nanotube/polyaniline nanocomposite for a skin-like stretchable array of multi-functional sensors. NPG Asia Mater 2017;9: 1-10. https://doi.org/10.1038/am.2017.194.
Zhou W, Fan Q, Zhang Q, Cai L, Li K, Gu X, Yang F, Zhang N, Wang Y, Liu H, Zhou W, Xie S. High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nat Commun 2017;8: 14886. https://doi.org/10.1038/ncomms14886.
Urban JJ. Organic electronics: one model to rule them all. Nat Mater 2017;16: 157-9. https://doi.org/10.1038/nmat4790.
Chen Y, Zhao Y, Liang Z. Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy Environ Sci 2015;8: 401-22. https://doi.org/10.1039/c4-e03297g.
Shi W, Chen J, Xi J, Wang D, Shuai Z. Search for organic thermoelectric materials with high mobility: the case of 2, 7-dialkyl[1] benzothieno[3, 2-b][1] benzothiophene derivatives. Chem Mater 2014;26: 2669-77. https://doi.org/10.1021/cm500429w.
Avery AD, Zhou BH, Lee J, Lee E-S, Miller EM, Ihly R, Wesenberg D, Mistry KS, Guillot SL, Zink BL, Kim Y-H, Blackburn JL, Ferguson AJ. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat. Energy. 2016;1: 16033. https://doi.org/10.1038/nenergy.2016.33.
Di CA, Xu W, Zhu D. Organic thermoelectrics for green energy. Natl. Sci. Rev. 2016;3: 269-71. https://doi.org/10.1093/nsr/nww040.
Zhao LD, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid VP, Uher C, Snyder GJ, Wolverton C, Kanatzidis MG. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016;351: 141-4. https://doi.org/10.1126/science.aad3749.
Duong AT, Nguyen VQ, Duvjir G, Duong VT, Kwon S, Song JY, Lee JK, Lee JE, Park S, Min T, Lee J, Kim J, Cho S. Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals. Nat Commun 2016;7: 1-6. https://doi.org/10.1038/ncomms13713.
He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357. https://doi.org/10.1126/science.aak9997.
Pei Y, Wang H, Snyder GJ. Band engineering of thermoelectric materials. Adv Mater 2012;24: 6125-35. https://doi.org/10.1002/adma.201202919.
Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang X, Uher C. Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation, and applications. Adv Mater 2017;29: 1-13. https://doi.org/10.1002/adma.201602013.
Pelda J, Stelter F, Holler S. Potential of integrating industrial waste heat and solar thermal energy into district heating networks in Germany. Energy 2020;203: 117812. https://doi.org/10.1016/j.energy.2020.117812.
Wang Y, Yang L, Shi XL, Shi X, Chen L, Dargusch MS, Zou J, Chen ZG. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater 2019;31: 1-47. https://doi.org/10.1002/adma.201807916.
Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X. Optimization of the thermoelectric figure of merit in the conducting polymer poly (3, 4-ethylenedioxythiophene). Nat Mater 2011;10: 429-33. https://doi.org/10.1038/nmat3012.
Ju H, Kim J. Chemically exfoliated SnSe nanosheets and their SnSe/poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano 2016;10: 5730-9. https://doi.org/10.1021/acsnano.5b07355.
Zheng W, Bi P, Kang H, Wei W, Liu F, Shi J, Peng L, Wang Z, Xiong R. Low thermal conductivity and high thermoelectric figure of merit in p-type Sb2Te3/poly (3, 4-ethylenedioxythiophene) thermoelectric composites. Appl Phys Lett 2014;105. https://doi.org/10.1063/1.4887504.
Wang L, Zhang Z, Liu Y, Wang B, Fang L, Qiu J, Zhang K, Wang S. Exceptional thermoelectric properties of flexible organicinorganic hybrids with monodispersed and periodic nanophase. Nat Commun 2018;9: 3817. https://doi.org/10.1038/s41467-018-06251-9.
Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder GJ, Yang R, Koumoto K. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat Mater 2015;14: 622-7. https://doi.org/10.1038/nmat4251.
Wan C, Tian R, Kondou M, Yang R, Zong P, Koumoto K. Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice. Nat Commun 2017;8: 1024. https://doi.org/10.1038/s41467-017-01149-4.
Culebras M, Gómez CM, Cantarero A. Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction. J Mater Chem A 2014;2: 10109-15. https://doi.org/10.1039/c4ta01012d.
Kyaw AKK, Yemata TA, Wang X, Lim SL, Chin WS, Hippalgaonkar K, Xu J. Enhanced thermoelectric performance of PEDOT: PSS films by sequential post-treatment with formamide. Macromol Mater Eng 2018;303: 1-7. https://doi.org/10.1002/mame.201700429.
Fan Z, Du D, Yu Z, Li P, Xia Y, Ouyang J. Significant enhancement in the thermoelectric properties of PEDOT: PSS films through a treatment with organic solutions of inorganic salts. ACS Appl Mater Interfaces 2016;8: 23204-11. https://doi.org/10.1021/acsami.6b07234.
Kim G, Shao L, Zhang K, Pipe KP. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 2013;12: 719-23. https://doi.org/10.1038/nmat3635.
Liu S, Li H, He C. Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT: PSS nanocomposites. Carbon 2019;149: 25-32. https://doi.org/10.1016/j.carbon.2019.04.007.
Yu C, Choi K, Yin L, Grunlan J. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 2011;5: 7885-92. https://doi.org/10.1021/nn202868a.
Wang L, Yao Q, Xiao J, Zeng K, Qu S, Shi W, Wang Q, Chen L. Engineered molecular chain ordering in single-walled carbonnanotubes/polyaniline composite films for high-performance organic thermoelectric materials. Chem Asian J 2016;11: 1804-10. https://doi.org/10.1002/asia.201600212.
Suemori K, Watanabe Y, Hoshino S. Carbon nanotube bundles/polystyrene composites as high-performance flexible thermoelectric materials. Appl Phys Lett 2015;106: 113902. https://doi.org/10.1063/1.4915622.
Jiang C, Wei P, Ding Y, Cai K, Tong L, Gao Q, Lu Y, Zhao W, Chen S. Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting. Nanomater Energy 2020. https://doi.org/10.1016/j.nanoen.2020.105488.
Xuan Y, Liu X, Desbief S, Leclère P, Fahlman M, Lazzaroni R, Berggren M, Cornil J, Emin D, Crispin X. Thermoelectric properties of conducting polymers: the case of poly (3-hexylthiophene). Phys Rev B 2010;82: 115454.
Kirchmeyer S, Reuter K. Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene). J Mater Chem 2005;15: 2077-88. https://doi.org/10.1039/b417803n.
Wang H, Hsu JH, Yi SI, Kim SL, Choi K, Yang G, Yu C. Thermally driven large ntype voltage responses from hybrids of carbon nanotubes and poly (3, 4-ethylenedioxythiophene) with tetrakis (dimethylamino) ethylene. Adv Mater 2015;27: 6855-61. https://doi.org/10.1002/adma.201502950.
Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 2000;12: 481-94. https://doi.org/10.1002/(SICI)1521-4095(200004) 12:7<481::AID-ADMA481>3.0.CO;2-C.
Toshima N. Recent progress of organic and hybrid thermoelectric materials. Synth Met 2017;225: 3-21. https://doi.org/10.1016/j.synthmet.2016.12.017.
Sun Z, Shu M, Li W, Li P, Zhang Y, Yao H, Guan S. Enhanced thermoelectric performance of PEDOT: PSS self-supporting thick films through a binary treatment with polyethylene glycol and water. Polymer 2020;192: 122328. https://doi.org/10.1016/j.polymer.2020.122328.
Park T, Park C, Kim B, Shin H, Kim E. Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ Sci 2013;6: 788-92. https://doi.org/10.1039/c3-e23729j.
Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG. Electrical conductivity in doped polyacetylene. Phys Rev Lett 1977;39: 1098-101. https://doi.org/10.1103/PhysRevB.24.7380.
Culebras M, Gómez CM, Cantarero A. Review on polymers for thermoelectric applications. Materials 2014;6: 6701-32. https://doi.org/10.3390/ma7096701.
Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T. Recent progress on PEDOTbased thermoelectric materials. Materials 2015;8: 732-50. https://doi.org/10.3390/ma8020732.
Nardes AM, Janssen RAJ, Kemerink M. A morphological model for the solvent-enhanced conductivity of PEDOT: PSS thin films. Adv Funct Mater 2008;18: 865-71. https://doi.org/10.1002/adfm.200700796.
Nardes AM, Kemerink M, de Kok MM, Vinken E, Maturova K, Janssen RAJ. Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol. Org. Electron. Physics, Mater. Appl. 2008;9: 727-34. https://doi.org/10.1016/j.orgel.2008.05.006.
Wei Q, Mukaida M, Naitoh Y, Ishida T. Morphological change and mobility enhancement in PEDOT: PSS by adding co-solvents. Adv Mater 2013;25: 2831-6. https://doi.org/10.1002/adma.201205158.
Lee W, Kang YH, Lee JY, Jang K, Cho SY. Improving the thermoelectric power factor of CNT/PEDOT: PSS nanocomposite films by ethylene glycol treatment. RSC Adv 2016: 53339-44. https://doi.org/10.1039/c6ra08599g.
Li J, Zhang M. Biporous nanocarbon foams and the effect of the structure on the capillary performance. Prog. Nat. Sci. Mater. Int. 2020;30: 360-5. https://doi.org/10.1016/j.pnsc.2020.05.006.
Zhang M, Li J. Carbon nanotube in different shapes. Mater Today 2009;12: 12-8. https://doi.org/10.1016/S1369-7021(09)70176-2.
Li S, Zhang M, Gao Y, Bao B, Wang S. ZnO-Zn/CNT hybrid film as light-free nanocatalyst for degradation reaction. Nanomater Energy 2013;2: 1329-36. https://doi.org/10.1016/j.nanoen.2013.06.015.
Cui Y, Wang B, Zhang M. Optimizing reaction condition for synthesizing spinnable carbon nanotube arrays by chemical vapor deposition. J Mater Sci 2013;48: 7749-56. https://doi.org/10.1007/s10853-013-7596-y.
De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science 2013;339: 535-9. https://doi.org/10.1126/science.1222453.
Wang X, Wang H, Liu B. Carbon nanotube-based organic thermoelectric materials for energy harvesting. Polymers 2018;10: 1196. https://doi.org/10.3390/polym10111196.
Ogurtsov NA, Noskov YV, Bliznyuk VN, Ilyin VG, Wojkiewicz JL, Fedorenko EA, Pud AA. Evolution and interdependence of structure and properties of nanocomposites of multiwall carbon nanotubes with polyaniline. J Phys Chem C 2016;120: 230-42. https://doi.org/10.1021/acs.jpcc.5b08524.
He X, Wang X, Nanot S, Cong K, Jiang Q, Kane AA, Goldsmith JEM, Hauge RH, Léonard F, Kono J. Photothermoelectric p-n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films. ACS Nano 2013;7: 7271-7. https://doi.org/10.1021/nn402679u.
Nonoguchi Y, Ohashi K, Kanazawa R, Ashiba K, Hata K, Nakagawa T, Adachi C, Tanase T, Kawai T. Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci Rep 2013;3: 1-7. https://doi.org/10.1038/srep03344.
Chen J, Gui X, Wang Z, Li Z, Xiang R, Wang K, Wu D, Xia X, Zhou Y, Wang Q, Tang Z, Chen L. Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications. ACS Appl Mater Interfaces 2012;4: 81-6. https://doi.org/10.1021/am201330f.
Zhang Z, Chen G, Wang H, Li X. Template-directed in situ polymerization preparation of nanocomposites of PEDOT: PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property. Chem Asian J 2015;10: 149-53. https://doi.org/10.1002/asia.201403100.
Hicks LD, Dresselhaus MS. Thermoelectric figure of merit of a onedimensional conductor. Phys Rev B 1993;47: 16631-4.
Bradley K, Jhi SH, Collins PG, Hone J, Cohen ML, Louie SG, Zettl A. Is the intrinsic thermoelectric power of carbon nanotubes positive. Phys Rev Lett 2000;85: 4361-4. https://doi.org/10.1103/PhysRevLett.85.4361.
Moriarty GP, Wheeler JN, Yu C, Grunlan JC. Increasing the thermoelectric power factor of polymer composites using a semiconducting stabilizer for carbon nanotubes. Carbon 2012;50: 885-95. https://doi.org/10.1016/j.carbon.2011.09.050.
Wang J, Cai K, Shen S, Yin J. Preparation and thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites. Synth Met 2014;195: 132-6. https://doi.org/10.1016/j.synthmet.2014.06.003.
Gnanaseelan M, Chen Y, Luo J, Krause B, Pionteck J, Pötschke P, Qi H. Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials. Compos Sci Technol 2018;163: 133-40. https://doi.org/10.1016/j.compscitech.2018.04.026.
Moriarty GP, Briggs K, Stevens B, Yu C, Grunlan JC. Fully organic nanocomposites with high thermoelectric power factors by using a dual-stabilizer preparation. Energy Technol 2013;1: 265-72. https://doi.org/10.1002/ente.201300018.
Adu CKW, Sumanasekera GU, Pradhan BK, Romero HE, Eklund PC. Carbon nanotubes: a thermoelectric nano-nose. Chem Phys Lett 2001;337: 31-5. https://doi.org/10.1016/S0009-2614(01)00159-2.
Nonoguchi Y, Nakano M, Murayama T, Hagino H, Hama S, Miyazaki K, Matsubara R, Nakamura M, Kawai T. Simple salt-coordinated n-type nanocarbon materials stable in air. Adv Funct Mater 2016;26: 3021-8. https://doi.org/10.1002/adfm.201600179.
Blackburn JL, Ferguson AJ, Cho C, Grunlan JC. Carbon-nanotube-based thermoelectric materials and devices. Adv Mater 2018;30: 1-35. https://doi.org/10.1002/adma.201704386.
Macleod BA, Stanton NJ, Gould IE, Wesenberg D, Ihly R, Owczarczyk ZR, Hurst KE, Fewox CS, Folmar CN, Holman Hughes K, Zink BL, Blackburn JL, Ferguson AJ. Large n-and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy Environ Sci 2017;10: 2168-79. https://doi.org/10.1039/c7-e01130j.
Wang YY, Cai KF, Shen S, Yao X. In-situ fabrication and enhanced thermoelectric properties of carbon nanotubes filled poly (3, 4-ethylenedioxythiophene) composites. Synth Met 2015;209: 480-3. https://doi.org/10.1016/j.synthmet.2015.08.034.
Du Y, Shen SZ, Yang WD, Cai KF, Casey PS. Preparation and characterization of multiwalled carbon nanotube/poly (3-hexylthiophene) thermoelectric composite materials. Synth Met 2012;162: 375-80. https://doi.org/10.1016/j.synthmet.2011.12.023.
Dörling B, Ryan JD, Craddock JD, Sorrentino A, El Basaty A, Gomez A, Garriga M, Pereiro E, Anthony JE, Weisenberger MC, Goñi AR, Müller C, Campoy-Quiles M. Photoinduced p-to n-type switching in thermoelectric polymer-carbon nanotube composites. Adv Mater 2016;28: 2782-9. https://doi.org/10.1002/adma.201505521.
Qu S, Wang M, Chen Y, Yao Q, Chen L. Enhanced thermoelectric performance of CNT/P3HT composites with low CNT content. RSC Adv 2018;8: 33855-63. https://doi.org/10.1039/C8RA07297C.
Zhang Q, Wang W, Li J, Zhu J, Wang L, Zhu M, Jiang W. Preparation and thermoelectric properties of multi-walled carbon nanotube/polyaniline hybrid nanocomposites. J Mater Chem A 2013;1: 12109-14. https://doi.org/10.1039/c3ta12353g.
Chen J, Wang L, Gui X, Lin Z, Ke X, Hao F, Li Y, Jiang Y, Wu Y, Shi X, Chen L. Strong anisotropy in thermoelectric properties of CNT/PANI composites. Carbon 2017;114: 1-7. https://doi.org/10.1016/j.carbon.2016.11.074.
Wang H, Yi SI, Pu X, Yu C. Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits. ACS Appl Mater Interfaces 2015;7: 9589-97. https://doi.org/10.1021/acsami.5b01149.
Song H, Cai K, Wang J, Shen S. Influence of polymerization method on the thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites. Synth Met 2016;211: 58-65. https://doi.org/10.1016/j.synthmet.2015.11.013.
Aghelinejad M, Zhang Y, Leung SN. Processing parameters to enhance the electrical conductivity and thermoelectric power factor of polypyrrole/multiwalled carbon nanotubes nanocomposites. Synth Met 2019;247: 59-66. https://doi.org/10.1016/j.synthmet.2018.11.016.
Kim SL, Choi K, Tazebay A, Yu C. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity. ACS Nano 2014;8: 2377-86. https://doi.org/10.1021/nn405893t.
Yao Q, Chen L, Zhang W, Liufu S, Chen X. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 2010;4: 2445-51. https://doi.org/10.1038/srep05774.
Cho C, Wallace KL, Tzeng P, Hsu J, Yu C, Grunlan JC. Outstanding low temperature thermoelectric power factor from completely organic thin films enabled by multidimensional conjugated nanomaterials. Adv. ENERGY Mater. 2016;6: 1502168. https://doi.org/10.1002/aenm.201502168.
Ohnishi M, Shiga T, Shiomi J. Effects of defects on thermoelectric properties of carbon nanotubes. Phys Rev B 2017;95: 1-10. https://doi.org/10.1103/PhysRevB.95.155405.
Zhao W, Fan S, Xiao N, Liu D, Tay YY, Yu C, Sim D, Hng HH, Zhang Q, Boey F, Ma J, Zhao X, Zhang H, Yan Q. Flexible carbon nanotube papers with improved thermoelectric properties. Energy Environ Sci 2012;5: 5364-9. https://doi.org/10.1039/c1-e01931g.
Kang YH, Lee YC, Lee C, Cho SY. Influence of the incorporation of small conjugated molecules on the thermoelectric properties of carbon nanotubes. Org Electron 2018;57: 165-70. https://doi.org/10.1016/j.orgel.2018.03.013.
Muthuraj R, Sachan A, Castro M, Feller JF, Seantier B, Grohens Y. Vapor and pressure sensors based on cellulose nanofibers and carbon nanotubes aerogel with thermoelectric properties. J. Renew. Mater. 2018;6: 277-87. https://doi.org/10.7569/JRM.2017.634182.
Yusupov K, Stumpf S, You S, Bogach A, Martinez PM, Zakhidov A, Schubert US, Khovaylo V, Vomiero A. Flexible thermoelectric polymer composites based on a carbon nanotubes forest. Adv Funct Mater 2018;1801246: 1-11. https://doi.org/10.1002/adfm.201801246.
Mai CK, Russ B, Fronk SL, Hu N, Chan-Park MB, Urban JJ, Segalman RA, Chabinyc ML, Bazan GC. Varying the ionic functionalities of conjugated polyelectrolytes leads to both p-and n-type carbon nanotube composites for flexible thermoelectrics. Energy Environ Sci 2015;8: 2341-6. https://doi.org/10.1039/c5-e00938c.
Meng C, Liu C, Fan S. A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv Mater 2010;22: 535-9. https://doi.org/10.1002/adma.200902221.
Li J, Huckleby AB, Zhang M. The enhanced power factor of multi-walled carbon nanotube/stabilized polyacrylonitrile composites due to the partially conjugated structure. J Mater 2021;7: 51-8. https://doi.org/10.1016/j.jmat.2020.08.002.
Yao Q, Wang Q, Wang L, Chen L. Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering. Energy Environ Sci 2014;7: 3801-7. https://doi.org/10.1039/c4-e01905a.
Zhang K, Davis M, Qiu J, Hope-Weeks L, Wang S. Thermoelectric properties of porous multi-walled carbon nanotube/polyaniline core/shell nanocomposites. Nanotechnology 2012;23: 385701. https://doi.org/10.1088/0957-4484/23/38/385701.
Wang Y, Yu C, Sheng M, Song S, Deng Y. Individual adjustment of electrical conductivity and thermopower enabled by multiple interfaces in polyaniline-based ternary hybrid nanomaterials for high thermoelectric performances. Adv. Mater. Interfaces. 2018;5: 7-9. https://doi.org/10.1002/admi.201701168.
Liang Z, Boland MJ, Butrouna K, Strachan DR, Graham KR. Increased power factors of organic-inorganic nanocomposite thermoelectric materials and the role of energy filtering. J Mater Chem A 2017;5: 15891-900. https://doi.org/10.1039/c7ta02307c.
He M, Ge J, Lin Z, Feng X, Wang X, Lu H, Yang Y, Qiu F. Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic-inorganic semiconductor interface. Energy Environ Sci 2012;5: 8351-8. https://doi.org/10.1039/c2-e21803h.
Hewitt CA, Kaiser AB, Roth S, Craps M, Czerw R, Carroll DL. Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. Nano Lett 2012;12: 1307-10. https://doi.org/10.1021/nl203806q.
Lu G, Bu L, Li S, Yang X. Bulk interpenetration network of thermoelectric polymer in insulating supporting matrix. Adv Mater 2014;26: 2359-64. https://doi.org/10.1002/adma.201305320.
Yu C, Murali A, Choi K, Ryu Y. Air-stable fabric thermoelectric modules made of N-and P-type carbon nanotubes. Energy Environ Sci 2012;5: 9481-6. https://doi.org/10.1039/c2-e22838f.
Kim D, Kim Y, Choi K, Grunlan J, Yu C. Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3, 4-ethylenedioxythiophene) Poly (styrenesulfonate). ACS Nano 2010;4: 513-23.
Yusupov K, Zakhidov A, You S, Stumpf S, Martinez PM, Ishteev A, Vomiero A, Khovaylo V, Schubert U. Influence of oriented CNT forest on thermoelectric properties of polymer-based materials. J Alloys Compd 2018;741: 392-7. https://doi.org/10.1016/j.jallcom.2018.01.010.
MacDiarmid AG, Epstein AJ. Secondary doping in polyaniline. Synth Met 1999;68: 85-92.
Luo T, Pan K. Flexible thermoelectric device based on poly (ether-b-amide12) and high-purity carbon nanotubes mixed bilayer heterogeneous films. ACS Appl Energy Mater 2018;1:1904-12. https://doi.org/10.1021/acsaem.7b00190.
Du Y, Shen SZ, Cai K, Casey PS. Research progress on polymer-inorganic thermoelectric nanocomposite materials. Prog Polym Sci 2012;37:820-41. https://doi.org/10.1016/j.progpolymsci.2011.11.003.
See KC, Feser JP, Chen CE, Majumdar A, Urban JJ, Segalman RA. Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Lett 2010;10:4664-7. https://doi.org/10.1021/nl102880k.
Wang Y, Cai K, Yao X. Facile fabrication and thermoelectric properties of PbTe-modified poly (3, 4-ethylenedioxythiophene) nanotubes. ACS Appl Mater Interfaces 2011;3:1163-6. https://doi.org/10.1021/am101287w.
Niemelä JP, Karttunen AJ, Karppinen M. Inorganic-organic superlattice thin films for thermoelectrics. J Mater Chem C 2015;3:10349-61. https://doi.org/10.1039/c5tc01643f.
Song H, Meng Q, Lu Y, Cai K. Progress on PEDOT: PSS/nanocrystal thermoelectric composites. Adv. Electron. Mater. 2019;5:1-18. https://doi.org/10.1002/aelm.201800822.
Coates NE, Yee SK, McCulloch B, See KC, Majumdar A, Segalman RA, Urban JJ. Effect of interfacial properties on polymer-nanocrystal thermoelectric transport. Adv Mater 2013;25:1629-33. https://doi.org/10.1002/adma.201203915.
Kumar P, Zaia EW, Yildirim E, Repaka DVM, Yang SW, Urban JJ, Hippalgaonkar K. Polymer morphology and interfacial charge transfer dominate over energy-dependent scattering in organic-inorganic thermoelectrics. Nat Commun 2018;9:1-10. https://doi.org/10.1038/s41467-018-07435-z.
Ma S, Anderson K, Guo L, Yousuf A, Ellingsworth EC, Vajner C, Wang HT, Szulczewski G. Temperature dependent thermopower and electrical conductivity of Te nanowire/poly (3, 4-ethylenedioxythiophene): poly (4-styrene sulfonate) microribbons. Appl Phys Lett 2014;105. https://doi.org/10.1063/1.4893740.
Hu X, Zhang K, Zhang J, Wang S, Qiu Y. Thermoelectric properties of conducting polymer nanowire-tellurium nanowire composites. ACS Appl Energy Mater 2018;1:4883-90. https://doi.org/10.1021/acsaem.8b00909.
Song H, Cai K. Preparation and properties of PEDOT: PSS/Te nanorod composite films for flexible thermoelectric power generator. Energy 2017;125: 519-25. https://doi.org/10.1016/j.energy.2017.01.037.
Zhang B, Sun J, Katz HE, Fang F, Opila RL. Promising thermoelectric properties of commercial PEDOT: PSS materials and their Bi2Te3 powder composites. ACS Appl Mater Interfaces 2010;2:3170-8. https://doi.org/10.1021/am100654p.
Ding Y, Qiu Y, Cai K, Yao Q, Chen S, Chen L, He J. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat Commun 2019;10:1-7. https://doi.org/10.1038/s41467-019-08835-5.
Lu Y, Qiu Y, Cai K, Li X, Gao M, Jiang C, He J. Ultrahigh performance PEDOT/Ag2Se/CuAgSe composite film for wearable thermoelectric power generators. Mater. Today Phys. 2020;14. https://doi.org/10.1016/j.mtphys.2020.100223.
Meng Q, Qiu Y, Cai K, Ding Y, Wang M, Pu H, Yao Q, Chen L, He J. High performance and flexible polyvinylpyrrolidone/Ag/Ag2Te ternary composite film for thermoelectric power generator. ACS Appl Mater Interfaces 2019;11: 33254-62. https://doi.org/10.1021/acsami.9b11217.
Tian R, Wan C, Wang Y, Wei Q, Ishida T, Yamamoto A, Tsuruta A, Shin W, Li S, Koumoto K. A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices. J Mater Chem A 2017;5:564-70. https://doi.org/10.1039/c6ta08838d.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).