AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Short Communication | Open Access

Solid-state ionic materials for critical applications

Yunhui Huanga( )Arumugam ManthirambB.V.R. Chowdaric
Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
Department of Physics, Solid State Ionics & Advanced Batteries Lab, National University of Singapore, 117 542, Singapore

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

References

[1]

Li B, Wang X, Gao Y, Qiu J, Cheng X, Dai D. Improving rate performances of Lirich layered oxide by the co-doping of Sn and K ions. J Materiomics 2019; 5: 149-55.

[2]

Zhu G, Wang Y, Yang S, Qu Q. Correlation between the physical parameters and the electrochemical performance of a silicon anode in lithium-ion batteries. J Materiomics 2019; 5: 164-75.

[3]

Jia W, Wang Y, Qu S, Yao Z, Liu Y, Li C, Wang Z, Li J. ZnF2 coated three dimensional Li-Ni composite anode for improved performance. J Materiomics 2019; 5: 176-84.

[4]

Liu R, Wu Z, He P, Fan H, Huang Z, Zhang L, Chang X, Liu H, Wang C-a, Li Y. A self-standing, UV-cured semi-interpenetrating polymer network reinforced composite gel electrolytes for dendrite-suppressing lithium ion batteries. J Materiomics 2019; 5: 185-94.

[5]

Wang Z, Chen S, Huang Z, Wei Z, Shen L, Gu H, Xu X, Yao X. High conductivity polymer electrolyte with comb-like structure via a solvent-free UV-cured method for large-area ambient all-solid-sate lithium batteries. J Materiomics 2019; 5: 195-203.

[6]

Pan R, Sun R, Lindh J, Edstrom K, Stromme M, Nyholm L. Polydopamine-based redox-active separators for lithium-ion batteries. J Materiomics 2019; 5: 204-13.

[7]

Huan Y, Fan Y, Li Y, Yin B, Hu X, Dong D, Wei T. Factors influencing Li+ migration in garnet-type ceramic electrolytes. J Materiomics 2019; 5: 214-20.

[8]

Huang X, Song Z, Xiu T, Badding ME, Wen Z. Searching for low-cost LixMOy compounds for compensating Li-loss in sintering of Li-Garnet solid electrolyte. J Materiomics 2019; 5: 221-8.

[9]

Sun S, Xia Q, Liu J, Xu J, Zan F, Yue J, Savilov SV, Lunin VV, Xia H. Self-standing oxygen-deficient α-MoO3-x nanoflake arrays as 3D cathode for advanced all-solid-state thin film lithium batteries. J Materiomics 2019; 5: 229-36.

[10]

Xu X, Liu C, Ma J, Jacobson AJ, Nan C, Chen C. Physicochemical properties of proton-conducting SmNiO3 epitaxial films. J Materiomics 2019; 5: 247-51.

[11]

Wei Y, Qian T, Liu J, Guo X, Gong Q, Liu Z, Tian B, Qiao J. Novel composite Nafion membranes modified with copper phthalocyanine tetrasulfonic acid tetrasodium salt for fuel cell application. J Materiomics 2019; 5: 252-7.

[12]

Kawabata T, Matsuo Y. Role of acetyl group on proton conductivity in chitin system. J Materiomics 2019; 5: 258-63.

[13]

Liu Z, Li K, Zhao H, Świerczek K. High-performance oxygen permeation membranes: Cobalt-free Ba0.975La0.025Fe1-xCuxO3-δ ceramics. J Materiomics 2019; 5: 264-72.

[14]

Jiang L, Lv F-C, Yang R, Hu D-C, Guo X. Forming-free artificial synapses with Ag point contacts at interface. J Materiomics 2019; 5: 296-302.

[15]

Chen Y, Guo M, He L, Yang W, Xu L, Meng J, Tian X, Ma X, Yu Q, Yang K, Hong X, Mai L. Scalable microfabrication of three-dimensional porous interconnected graphene scaffolds with carbon spheres for high-performance all carbon-based micro-supercapacitors. J Materiomics 2019; 5: 303-12.

[16]

Gong Q, Han H, Yang H, Zhang M, Sun X, Liang Y, Liu Z, Zhang W, Qiao J. Sensitive electrochemical DNA sensor for the detection of HIV based on a polyaniline/graphene nanocomposite. J Materiomics 2019; 5: 313-9.

Journal of Materiomics
Pages 147-148
Cite this article:
Huang Y, Manthiram A, Chowdari B. Solid-state ionic materials for critical applications. Journal of Materiomics, 2019, 5(2): 147-148. https://doi.org/10.1016/j.jmat.2019.05.003

114

Views

1

Crossref

N/A

Web of Science

2

Scopus

Altmetrics

Received: 06 May 2019
Accepted: 07 May 2019
Published: 09 May 2019
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return