Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A broad tunability of the thermoelectric and mechanical properties of CoSb3 has been demonstrated by adjusting the composition with the addition of an increasing number of elements. However, such a strategy may negatively impact processing repeatability and composition control. In this work, single-element-filled skutterudite is engineered to have high thermoelectric and mechanical performances. Increased Yb filling fraction is found to increase phonon scattering, whereas cryogenic grinding contributes additional microstructural scattering. A peak zT of 1.55 and an average zT of about 1.09, which is comparable to the reported results of multiple-filled SKDs, are realized by the combination of simple composition and microstructure engineering. Furthermore, the mechanical properties of Yb single-filled CoSb3 skutterudite are improved by manipulation of the microstructure through cryogenic grinding. These findings highlight the realistic prospect of producing high-performance thermoelectric materials with reduced compositional complexity.
Shi X, Chen LD. Thermoelectric materials step up. Nat Mater 2016;15:691–2.
He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357(6358). eaak9997.
Shi X, Bai SQ, Xi LL, Yang J, Zhang WQ, Chen LD, et al. Realization of high thermoelectric performance in n-type partially filled skutterudites. J Mater Res 2011;26(15):1745–54.
Nolas GS, Kaeser M, Littleton RT, Tritt TM. High figure of merit in partially filled ytterbium skutterudite materials. Appl Phys Lett 2000;77(12):1855–7.
Tang Y, Gibbs ZM, Agapito LA, Li G, Kim HS, Nardelli MB, et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat Mater 2015;14:1223–8.
Wang S, Salvador JR, Yang J, Wei P, Duan B, Yang J. High-performance n-type YbxCo4Sb12: from partially filled skutterudites towards composite thermoelectrics. NPG Asia Mater 2016;8(7): e285.
Li H, Tang XF, Su XL, Zhang QJ. Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl Phys Lett 2008;92(20):202114.
Chen LD, Kawahara T, Tang XF, Goto T, Hirai T, Dyck JS, et al. Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J Appl Phys 2001;90(4):1864–8.
Pei YZ, Yang J, Chen LD, Zhang W, Salvador JR, Yang J. Improving thermoelectric performance of caged compounds through light-element filling. Appl Phys Lett 2009;95(4). 042101.
Shi X, Kong H, Li CP, Uher C, Yang J, Salvador JR, et al. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl Phys Lett 2008;92:182101.
Zhao WY, Wei P, Zhang QJ, Dong CL, Liu LS, Tang XF. Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. J Am Chem Soc 2009;131(10):3713–20.
Li H, Su XL, Tang XF, Zhang QJ, Uher C, Snyder GJ, et al. Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectrics. J Materiomics 2017;3(4):273–9.
Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 2011;133(20):7837–46.
Rogl G, Grytsiv A, Rogl P, Peranio N, Bauer E, Zehetbauer M, et al. n-Type skutterudites (R, Ba, Yb)yCo4Sb12 (R=Sr, La, Mm, DD, SrMm, SrDD) approaching ZT≈2.0. Acta Mater 2014;63:30–43.
Zhang QH, Zhou ZX, Dylla M, Agne MT, Pei YZ, Wang LJ, et al. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano Energy 2017;1:501–10.
Wei TR, Wu CF, Li F, Li JF. Low-cost and environmentally benign selenides as promising thermoelectric materials. J Materiomics 2018;4(4):304–20.
Li MM, Shao HZ, Xu JT, Wu QS, Tan XJ, Liu GQ, et al. Microstructure engineering beyond SnSe1-xSx solid solution for high thermoelectric performance. J Materiomics 2018;4(4):321–8.
Su XL, Wei P, Li H, Liu W, Yan Y, Li P, et al. Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation, and applications. Adv Mater 2017;29(20):1602013.
Pan Y, Aydemir U, Grovogui JA, Witting IT, Hanus R, Xu Y, et al. Melt-centrifuged (Bi, Sb)2Te3: engineering microstructure toward high thermoelectric efficiency. Adv Mater 2018;30:1802016.
Hanus R, Agne MT, Rettie AJE, Chen Z, Tan G, Chung DY, et al. Lattice softening significantly reduces thermal conductivity and leads to high thermoelectric efficiency. Adv Mater 2019:1900108.
Zong PA, Hanus R, Dylla M, Tang Y, Liao J, Zhang QH, et al. Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ Sci 2017;10(1):183–91.
Zhang QH, Liao JC, Tang YS, Gu M, Ming C, Qiu PF, et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ Sci 2017;10(4):956–63.
Xiong Z, Chen X, Huang X, Bai S, Chen L. High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater 2010;58(11):3995–4002.
Dahal T, Jie Q, Joshi G, Chen S, Guo C, Lan Y, Ren ZF. Thermoelectric property enhancement in Yb-doped n-type skutterudites YbxCo4Sb12. Acta Mater 2014;75:316–21.
Meng X, Liu Z, Cui B, Qin D, Geng H, Cai W, et al. Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Adv Energy Mater 2017;7:1602582.
Zhao XY, Shi X, Chen LD, Zhang WQ, Bai SQ, Pei YZ, et al. Synthesis of YbyCo4Sb12∕Yb2O3 composites and their thermoelectric properties. Appl Phys Lett 2006;89(9):092121.
Li Y, Qiu P, Xiong Z, Chen J, Nunna R, Shi X, et al. Electrical and thermal transport properties of YbxCo4Sb12 filled skutterudites with ultrahigh carrier concentrations. AIP Adv 2015;5(11):117239.
Tang Y, Chen SW, Snyder GJ. Temperature dependent solubility of Yb in Yb-CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics. J Materiomics 2015;1(1):75–84.
Zong PA, Chen XH, Zhu Y, Liu Z, Zeng Y, Chen LD. Construction of a 3D-rGO network-wrapping architecture in a YbyCo4Sb12/rGO composite for enhancing the thermoelectric performance. J Mater Chem 2015;3:8643–9.
Ding J, Gu H, Qiu P, Chen X, Xiong Z, Zheng Q, et al. Creation of Yb2O3 Nanoprecipitates through an oxidation process in bulk Yb-filled skutterudites. J Electron Mater 2013;42:382–8.
Kuo JJ, Kang SD, Imasato K, Tamaki H, Ohno S, Kanno T, et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy Environ Sci 2018;11(2):429–34.
Agne MT, Hanus R, Snyder GJ. Minimum thermal conductivity in the context of diffuson-mediated thermal transport. Energy Environ Sci 2018;11(3):609–16.
Benyahia M, Ohorodniichuk V, Leroy E, Dauscher A, Lenoir B, Alleno E. High thermoelectric figure of merit in mesostructured In0.25Co4Sb12 n-type skutterudite. J Alloy Comp 2018;735:1096–104.
Zhang J, Xu B, Wang L-M, Yu D, Yang J, Yu F, et al. High-pressure synthesis of phonon-glass electron-crystal featured thermoelectric LixCo4Sb12. Acta Mater 2012;60(3):1246–51.
Yang J, Hao Q, Wang H, Lan YC, He QY, Minnich A, et al. Solubility study of Yb inn-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Phys Rev B 2009;80:115329.
Snyder GJ, Snyder AH. Figure of merit ZT of a thermoelectric device defined from materials properties. Energy Environ Sci 2017;10:2280–3.
Matsuura K, Kata DB, Lis JT, Kudoh M. Grain refinement and improvement in mechanical properties of Nb-Al-Si intermetallic alloys. ISIJ Int 2006;46:875–9.
Habibi MK, Gupta M, Joshi SP. Size-effects in textural strengthening of hierarchical magnesium nano-composites. Mater Sci Eng A-Struct Mater 2012;556:855–63.
Zheng Y, Zhang Q, Su X, Xie H, Shu S, Chen T, et al. Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials. Adv Energy Mater 2015;5:1401391.
Wan S, Huang X, Qiu P, Bai S, Chen L. The effect of short carbon fibers on the thermoelectric and mechanical properties of p-type CeFe4Sb12 skutterudite composites. Mater Des 2015;67:379–84.
Duan B, Zhai P, Ding S, Xu C, Li G, Liu L, et al. Effects of nanoparticle size on the thermoelectric and mechanical properties of skutterudite nanocomposites. J Electron Mater 2014;43(6):2115–20.
Li G, Yang J, Xiao Y, Fu L, Luo Y, Zhang D, et al. Effect of TiC nanoinclusions on thermoelectric and mechanical performance of polycrystalline In4Se2.65. J Am Ceram Soc 2015;98(12):3813–7.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).