AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

High conductivity polymer electrolyte with comb-like structure via a solvent-free UV-cured method for large-area ambient all-solid-sate lithium batteries

Zhihao Wanga,bShaojie Chena( )Zhen HuangaZhenyao WeiaLin ShenaHui GubXiaoxiong XuaXiayin Yaoa( )
Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

A novel solid polymer electrolyte with comb-like structure is prepared via a solvent-free UV-cured method. The relationship between conductivity and molecular weight is investigated and revealed. The optimal electrolyte presents a considerably high conductivity of 1.44 × 10−4 S·cm−1 at 30 ℃. Meanwhile, it shows excellent compatibility with metallic lithium and wide electrochemical window (> 5 V). To investigate the safety and cycling performance, the coin cell and soft package battery are assembled respectively. The LiFePO4/Li coin cells exhibit initial discharge specific capacities of 163.2, 147.7, 137.3 and 108.7 mA·h·g−1 at 0.1, 0.2, 0.5 and 1C under 60 ℃, respectively. Notably, when the coin cells work at 30 ℃, the initial discharge specific capacities at 0.05, 0.1, 0.2 and 0.5C are 140.5, 133.5, 107.7 and 55.6 mA·h·g−1. Significantly, a 3.5 cm × 7 cm solid-state soft pack battery is fabricated and cycling at 30 ℃. The first discharge capacity reaches to 137.5 mA·h·g−1 and the capacity retention is as high as 84.4% after 100 cycles at 0.2C and remain 95.5% after 100 cycles at 0.5C, respectively. These results shows a promising solid polymer electrolyte for solid-state batteries with good cycling and safety performance.

References

[1]

Armand M, Tarascon JM. Building better batteries. Nature 2008;451:652-7. https://doi: 10.1038/451652a.

[2]

Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010;22:587-603. https://doi: 10.1021/cm901452z.

[3]

Fergus JW. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 2010;195:4554-69. https://doi: 10.1016/j.jpowsour.2010.01.076.

[4]

Chen RJ, Qu WJ, Guo X, Li L, Wu F. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz. 2016;3:487-516. https://doi: 10.1039/c6mh00218h.

[5]

Agrawal RC, Pandey GP. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 2008;41: 223001-19. https://doi: 10.1088/0022-3727/41/22/223001.

[6]

Nair JR, Destro M, Bella F, Appetecchi GB, Gerbaldi C. Thermally cured semiinterpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries. J Power Sources 2016;306:258-67. https://doi: 10.1016/j.jpowsour.2015.12.001.

[7]

Gorecki W, Andreani R, Berthier C, Armand M, Mali M, Roos J, Brinkmann D. NMR, DSC, and conductivity study of a poly(ethylene oxide) complex electrolyte : PEO(LiClO4)x. Solid State Ionics 1986;18-19:295-9. https://doi:https://doi.org/10.1016/0167-2738(86)90130-X.

[8]

Tsunemi K, Ohno H, Tsuchida E. A mechanism of ionic conduction of poly (vinylidene fluoride)-lithium perchlorate hybrid films. Electrochim Acta 1983;28:833-7. https://doi:https://doi.org/10.1016/0013-4686(83)85155-X.

[9]

Ferry A, Edman L, Forsyth M, MacFarlane DR, Sun J. NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN. Electrochim Acta 2000;45:1237-42. https://doi:https://doi.org/10.1016/S0013-4686(99)00386-2.

[10]

Li Y-H, Wu X-L, Kim J-H, Xin S, Su J, Yan Y, Lee J-S, Guo Y-G. A novel polymer electrolyte with improved high-temperature-tolerance up to 170 ℃ for hightemperature lithium-ion batteries. J Power Sources 2013;244:234-9. https://doi:https://doi.org/10.1016/j.jpowsour.2013.01.148.

[11]

MacGlashan GS, Andreev YG, Bruce PG. Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6. Nature 1999;398:792-4. https://doi: 10.1038/19730.

[12]

Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander BE. Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(- ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 2014;266:25-8. https://doi: 10.1016/j.ssi.2014.08.002.

[13]

Wetjen M, Navarra MA, Panero S, Passerini S, Scrosati B, Hassoun J. Composite poly(ethylene oxide) electrolytes plasticized by N-alkyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide for lithium batteries. Chem Sus Chem 2013;6:1037-43. https://doi: 10.1002/cssc.201300105.

[14]

Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA. Organiceinorganic composite polymer electrolyte based on PEOeLiClO4 and nano-Al2O3 filler for lithium polymer batteries: dielectric and transport properties. J Alloy Comp 2013;575:223-8. https://doi: 10.1016/j.jallcom.2013.04.054.

[15]

Zhao YR, Huang Z, Chen SJ, Chen B, Yang J, Zhang Q, Ding F, Chen YH, Xu XX. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics 2016;295:65-71. https://doi: 10.1016/j.ssi.2016.07.013.

[16]

Zhao Y, Wu C, Peng G, Chen X, Yao X, Bai Y, Wu F, Chen S, Xu X. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J Power Sources 2016;301:47-53. https://doi: 10.1016/j.jpowsour.2015.09.111.

[17]

Fan L-Z, Maier J. Composite effects in poly(ethylene oxide)esuccinonitrile based all-solid electrolytes. Electrochem Commun 2006;8:1753-6. https://doi:https://doi.org/10.1016/j.elecom.2006.08.017.

[18]

Kesavan K, Mathew CM, Rajendran S, Subbu C, Ulaganathan M. Solid polymer blend electrolyte based on poly(ethylene oxide) and poly(vinyl pyrrolidone) for lithium secondary batteries. Braz J Phys 2014;45:19-27. https://doi: 10.1007/s13538-014-0279-6.

[19]

Chun-Guey W, Chiung-Hui W, Ming-I L, Huey-Jan C. New solid polymer electrolytes based on PEO/PAN hybrids. J Appl Polym Sci 2005;99:1530-40. https://doi: 10.1002/app.22250.

[20]

Chen B, Xu Q, Huang Z, Zhao YR, Chen SJ, Xu XX. One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. J Power Sources 2016;331:322-31. https://doi: 10.1016/j.jpowsour.2016.09.063.

[21]

Pan Q, Smith DM, Qi H, Wang S, Li CY. Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv Mater 2015;27: 5995-6001. https://doi: 10.1002/adma.201502059.

[22]

Wei Z, Chen S, Wang J, Wang Z, Zhang Z, Yao X, Deng Y, Xu X. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode. J Power Sources 2018;394:57-66. https://doi: 10.1016/j.jpowsour.2018.05.044.

[23]

Tang J, Chen EYX. Effects of chain ends on thermal and mechanical properties and recyclability of poly(g-butyrolactone). J Polym Sci, Part A: Polym Chem 2018;56:2271-9. https://doi: 10.1002/pola.29180.

[24]

Liu N, Zhao Y, Kang M, Wang J, Wang X, Feng Y, Yin N, Li Q. The effects of the molecular weight and structure of polycarbonatediols on the properties of waterborne polyurethanes. Prog Org Coating 2015;82:46-56. https://doi: 10.1016/j.porgcoat.2015.01.015.

[25]

Watanabe M, Nagano S, Sanui K, Ogata N. Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid State Ionics 1988;28-30: 911-7. https://doi:https://doi.org/10.1016/0167-2738(88)90303-7.

[26]

Chen B, Huang Z, Chen XT, Zhao YR, Xu Q, Long P, Chen SJ, Xu XX. A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochim Acta 2016;210:905-14. https://doi:10.1016/j.electacta.2016.06.025.

Journal of Materiomics
Pages 195-203
Cite this article:
Wang Z, Chen S, Huang Z, et al. High conductivity polymer electrolyte with comb-like structure via a solvent-free UV-cured method for large-area ambient all-solid-sate lithium batteries. Journal of Materiomics, 2019, 5(2): 195-203. https://doi.org/10.1016/j.jmat.2019.04.002

217

Views

17

Crossref

N/A

Web of Science

24

Scopus

Altmetrics

Received: 19 October 2018
Revised: 04 April 2019
Accepted: 04 April 2019
Published: 08 April 2019
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return