Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This work is a study of the effect of co-doping (ZrO2)0.9(Sc2O3)0.1 solid solution with yttria and/or ceria on the phase composition, local structure and transport properties of the crystals. The solid solution crystals were grown using directional melt crystallization in cold crucible. We show that ceria co-doping of the crystals does not stabilize the high-temperature cubic phase in the entire crystal bulk, unlike yttria co-doping. Ceria co-doping of the (ZrO2)0.9(Sc2O3)0.1 crystals increases their conductivity, whereas the addition of 1 mol.% yttria tangibly reduces the conductivity. Equimolar co-doping of the (ZrO2)0.9(Sc2O3)0.1 crystals with ceria and yttria changes the conductivity but slightly. Optical spectroscopy of the local structure of the crystals identified different types of optical centers. We found that the fraction of the trivalent cations having a vacancy in the first coordination sphere in the ceria co-doped crystals is smaller compared with that in the yttria co-doped crystals.
Badwal SPS, Ciacchi FT, Milosevic D. Scandiaezirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ionics 2000;136–137:91–9. https://doi.org/10.1016/S0167-2738(00)00356-8.
Politova TI, Irvine JTS. Investigation of scandia–yttria–zirconia system as an electrolyte material for intermediate temperature fuel cells–influence of yttria content in system (Y2O3)x(Sc2O3)(11-x)(ZrO2)89. Solid State Ionics 2004;168:153–65. https://doi.org/10.1016/j.ssi.2004.02.007.
Du K, Kim C-H, Heuer AH, Goettler R, Liu Z. Structural evolution and electrical properties of Sc2O3-stabilized ZrO2 aged at 850 ℃ in air and wet-forming gas ambients. J Am Ceram Soc 2008;91:1626–33. https://doi.org/10.1111/j.1551-2916.2007.02138.x.
Wang H, Enriquez E, Collins G, Ma C, Liu M, Zhang Y, Dong C, Chen C. Anomalous redox properties and ultrafast chemical sensing behavior of double perovskite CaBaCo2O5+δ thin films. J Materiomics 2015;1:113–7. https://doi.org/10.1016/j.jmat.2015.04.003.
Sydyknazar S, Cascos V, Fernandez-Díaz MT, Alonso JA. Design, synthesis and performance of Ba-doped derivatives of SrMo0.9Fe0.1O3-δ perovskite as anode materials in SOFCs. J Materiomics 2018. in press, https://doi.org/10.1016/j.jmat.2018.12.001.
Mace B, Harrell Z, Xu X, Chen C, Enriquez E, Chen A, Jia Q. Correlation of structural and electrical properties of PrBaCo2O5+δ thin films at high temperature. J Materiomics 2018;4:51–5. https://doi.org/10.1016/j.jmat.2017.12.003.
Li F, Zeng R, Jiang L, Wei T, Lin X, Xu Y, Huang Y. Enhanced electrochemical activity in Ca3Co2O6 cathode for solid-oxide fuel cells by Cu substitution. J Materiomics 2015;1:60–7. https://doi.org/10.1016/j.jmat.2015.03.006.
Chiba R, Ishii T, Yoshimura F. Temperature dependence of ionic conductivity in (1-x) ZrO2-(x-y) Sc2O3- yYb2O3 electrolyte material. Solid State Ionics 1996;91:249–56. https://doi.org/10.1016/S0167-2738(96)83026-8.
Spirin A, Ivanov V, Nikonov A, Lipilin A, Paranin A, Khrustov S, et al. Scandia–stabilized zirconia doped with yttria: synthesis, properties, and ageing behavior. Solid State Ionics 2012;225:448–52. https://doi.org/10.1016/j.ssi.2012.02.022.
Lee DS, Kim WS, Choi SH, Kim J, Lee HW, Lee JH. Characterization of ZrO2 Co–doped with Sc2O3 and CeO2, electrolyte for the application of intermediate temperature SOFCs. Solid Sate Ionics 2005;176:33–9. https://doi.org/10.1016/j.ssi.2004.07.013.
Abbas HA, Argirusis C, Kilo M, Wiemhofer H-D, Hammad FF, Hana fi ZM. Preparation and conductivity of ternary scandia-stabilised zirconia. Solid State Ionics 2011;184:6–9. https://doi.org/10.1016/j.ssi.2010.10.012.
Omar S, Najib WB, Chen W, Bonanos N. Electrical conductivity of 10 mol% Sc2O3–1 mol% M2O3eZrO2. J Am Ceram Soc 2012;95:1965–72. https://doi.org/10.1111/j.1551-2916.2012.05126.x.
Huang H, Hsieh CH, Kim N, Stebbins J, Prinz F. Structure, local environment, and ionic conduction in scandia stabilized zirconia. Solid State Ionics 2008;179:1442–5. https://doi.org/10.1016/j.ssi.2008.02.061.
Parkes MA, Refson K, d'Avezac M, Offer GJ, Brandon NP, Harrison NM. Chemical descriptors of yttria-stabilized zirconia at low defect concentration: an ab initio study. J Phys Chem A 2015;119:6412–20. https://doi.org/10.1021/acs.jpca.5b02031.
Ding H, Virkar AV, Liu F. Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia. Solid State Ionics 2012;215:16–23. https://doi.org/10.1016/j.ssi.2012.03.014.
Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishai N. Electrical conductivity of the ZrO2–Ln2O3 (Ln=lanthanides) system. Solid State Ionics 1999;121:133–9. https://doi.org/10.1016/S0167-2738(98)00540-2.
Goff JP, Hayes W, Hull S, Hutchings MT, Clausen KN. Defect structure of yttria–stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys Rev B 1999;59:14202–19. https://doi.org/10.1103/PhysRevB.59.14202.
Catlow CRA. Transport in doped fluorite oxides. Solid State Ionics 1984;12:67–73. https://doi.org/10.1016/0167-2738(84)90131-0.
Yugami H, Koike A, Ishigame M, Suemoto T. Relationship between local structures and ionic conductivity in ZrO2-Y2O3 studied by site-selective spectroscopy. Phys Rev B 1991;44:9214–22. https://doi.org/10.1103/PhysRevB.44.9214.
Borik MA, Volkova TV, Kuritsyna IE, Lomonova EE, Myzina VA, Ryabochkina PA, et al. Features of the local structure and transport properties of ZrO2-Y2O3-Eu2O3 solid solutions. J Alloy Comp 2019;770:320–6. https://doi.org/10.1016/j.jallcom.2018.08.117.
Agarkov DA, Burmistrov IN, Tsybrov FM, Tartakovskii Ⅱ, Kharton VV, Bredikhin SI, et al. Analysis of interfacial processes at the SOFC electrodes by in-situ Raman spectroscopy. ECS Trans 2015;68:2093–103. https://doi.org/10.1149/06801.2093ecst.
Agarkov DA, Burmistrov IN, Tsybrov FM, Tartakovskii Ⅱ, Kharton VV, Bredikhin SI. Kinetics of NiO reduction and morphological changes in composite anodes of solid oxide fuel cells: estimate using Raman scattering technique. Russ J Electrochem 2016;52:600–5. https://doi.org/10.1134/S1023193516070028.
Agarkov DA, Burmistrov IN, Tsybrov FM, Tartakovskii Ⅱ, Kharton VV, Bredikhin SI. In-situ Raman spectroscopy analysis of the interfaces between Ni-based SOFC anodes and stabilized zirconia electrolyte. Solid State Ionics 2017;302:133–7. https://doi.org/10.1016/j.ssi.2016.12.034.
Wang Z, Cheng M, Bi Z. Structure and impedance of ZrO2 doped with Sc2O3 and CeO2. Mater Lett 2005;59:2579–82. https://doi.org/10.1016/j.matlet.2004.07.065.
Tan J, Su Y, Tang H, Hu T, Yu Q, Tursun R, et al. Effect of calcined parameters on microstructure and electrical conductivity of 10Sc1CeSZ. J Alloy Comp 2016;686:394–8. https://doi.org/10.1016/j.jallcom.2016.06.039.
Hemberger Y, Wichtner N, Berthold C, Nickel KG. Quantification of yttria in stabilized zirconia by Raman spectroscopy. Int J Appl Ceram Technol 2016;13:116–24. https://doi.org/10.1111/ijac.12434.
Dasari HP, Ahn JS, Ahn K, Park SY, Hong J, Kim H, et al. Synthesis, sintering and conductivity behavior of ceria-doped scandia-stabilized zirconia. Solid State Ionics 2014;263:103–9. https://doi.org/10.1016/j.ssi.2014.05.013.
Darby RJ, Farnan I, Kumar RV. DThe effect of co-doping on the yttrium local environment and ionic conductivity of yttria-stabilised zirconia. Ionics 2009;15(2):183–90. https://doi.org/10.1007/s11581-008-0250-z.
Martin M. On the ionic conductivity of strongly acceptor doped, fluorite-type oxygen ion conductors. J Electroceram 2006;17(2–4):765–73. https://doi.org/10.1007/s10832-006-6007-z.
Ding H, Virkar AV, Liu F. Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia. Solid State Ionics 2012;215:16–23. https://doi.org/10.1016/j.ssi.2012.03.014.
Parkes MA, Tompsett DA, d'Avezac M, Offer GJ, Brandon NP, Harrison NM. The atomistic structure of yttria stabilised zirconia at 6.7 mol%: an ab initio study. Phys Chem Chem Phys 2016;18(45):31277–85. https://doi.org/10.1039/C6CP04694K.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).