Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A new group of cobalt-free perovskite oxides, Ba0.975La0.025FeCuO3-δ (BLFC, x = 0.05–0.15), was designed, characterized and applied as oxygen permeation membranes. It was found that BLFC oxides with Cu doping range of 0.075–0.15 maintain cubic perovskite phase in a wide range of temperatures. More Cu introduced at the B-site results in a gradual increase of the electrical conductivity, which is attributed to the denser overlapping of electron clouds of Cu–O bonds. With increasing Cu content, the oxygen vacancy concentration increases and the oxygen ion migration energy decreases, leading to the highest oxygen permeation flux of 1.59 mL cm−2 min−1 recorded for Ba0.975La0.025Fe0.9Cu0.1O3-δ 1 mm thick membrane at 950 °C. However, the oxygen permeability decreases with further Cu doping, which may be correspond to a presence of defect association. Ba0.975La0.025Fe0.9Cu0.10O3-δ membrane with 0.7 mm thickness delivers stable oxygen permeation flux of 1.57 mL cm−2 min−1 for 200 h at 900 °C. All of the obtained results indicate that the developed BLFC with optimized Cu content (i.e. x = 0.1) is a very promising material for usage in oxygen separation applications.
Martynczuk J, Liang F, Arnold M, Arnold M, Šepelák V, Feldhoff A. Aluminum-doped perovskites as high-performance oxygen permeation materials. Chem Mater 2009;21(8):1586–94.
Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F. Nonstoichiometric oxides as lowcost and highly-efficient oxygen reduction/evolution catalysts for lowtemperature electrochemical devices. Chem Soc Rev 2015;115(18):9869–921.
Yu AS, Vohs JM, Gorte RJ. Interfacial reactions in ceramic membrane reactors for syngas production. Energy Environ Sci 2014;7(3):944–53.
Thursfield A, Murugan A, Franca R, Metcalfe IS. Chemical looping and oxygen permeable ceramic membranes for hydrogen productionea review. Energy Environ Sci 2012;5(6):7421–59.
Gupta S, Mahapatra MK, Singh P. Lanthanum chromite based perovskites for oxygen transport membrane. Mat Sci Eng R 2015;90:1–36.
Gupta S, Adams JJ, Wilson JR, Eddings EG, Mahapatra MK, Singh P. Performance and post-test characterization of an OTM system in an experimental coal gasifier. Appl Energy 2016;65:72–80.
Zhang K, Sunarso J, Shao Z, Zhou W, Sun C, Wang S, Liu S. Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC Adv 2011;9:1661–76.
Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC. Mixed ioniceelectronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 2008;20(1–2):13–41.
Liang F, Jiang H, Schiestel T, Caro J. High-purity oxygen production from air using perovskite hollow fiber membranes. Ind Eng Chem Res 2010;9(19):9377–84.
Bouwmeester HJM. Dense ceramic membranes for methane conversion. Catal Today 2003;82(1–4):141–50.
Jiang H, Wang H, Liang F, Werth S, Schiestel T, Caro J. Direct decomposition of nitrous oxide to nitrogen by in situ oxygen removal with a perovskite membrane. Angew Chem Int Ed 2009;48(16):2983–6.
Pena MA, Fierro JLG. Chemical structures and performance of perovskite oxides. Chem Soc Rev 2001;101(7):1981–2018.
Lu Y, Zhao H, Chang X, Du X, Li K, Ma Y, Yi S, Du Z, Zheng K, Świerczek K. Novel cobalt-free BaFe1−xGdxO3−δ perovskite membranes for oxygen separation. J Mater Chem 2016;4(27):10454–66.
Teraoka Y, Zhang HM, Furukawa S, Yamazoe N. Oxygen permeation through perovskite-type oxides. Chem Lett 1985;14(11):1743–6.
Shao Z, Xiong G, Tong J, Dong H, Yang W. Ba effect in doped Sr(Co0.8Fe0.2)O3-δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Separ Purif Technol 2001;25(1–3):419–29.
Liang F, Jiang H, Luo H, Caro J. Phase stability and permeation behavior of a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3−δ tube membrane in high-purity oxygen production. Chem Mater 2011;23(21):4765–72.
Efimov K, Xu Q, Feldhoff A. Transmission electron microscopy study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite decomposition at intermediate temperatures. Chem Mater 2010;22(21):5866–75.
McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM. Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-δ measured by in situ neutron diffraction. Chem Mater 2006;18(8):2187–93.
Liu Y, Zhu X, Li M, O'Hayre RP, Yang W. Nanoparticles at grain boundaries inhibit the phase transformation of perovskite membrane. Nano Lett 2015;15(11):7678–83.
Efimov K, Xu Q, Feldhoff A. Transmission electron microscopy study of Ba0.5Sr0.5Co0.8Fe0.2O3d perovskite decomposition at intermediate temperatures. Chem Mater 2010;22(21):5866–75.
Watanabe K, Takauchi D, Yuasa M, Kida T, Shimanoe K, Teraoka Y, Yamazoe N. Oxygen permeation properties of Co-free perovskite-type oxide membranes based on BaFe1yZryO3d. J Electrochem Soc 2009;156(5):E81–5.
Goldschmidt VM. Die gesetze der krystallochemie. Sci Nat-Heidelberg 1926;14(21):477–85.
Sammells AF, Cook RL, White JH, Osborne JJ, MacDuff RC. Rational selection of advanced solid electrolytes for intermediate temperature fuel cells. Solid State Ionics 1992;52(1–3):111–23.
Teraoka Y, Shimokawa H, Kang CY, Kusaba H, Sasaki K. Fe-based perovskitetype oxides as excellent oxygen-permeable and reduction-tolerant materials. Solid State Ionics 2006;177(26–32):2245–8.
Wang Y, Liao Q, Zhou L, Wang H. Oxygen permeability and structure stability of a novel cobalt-free perovskite Gd0. 33Ba0. 67FeO3− δ. J Membr Sci 2014;457:82–7.
Watanabe K, Takauchi D, Yuasa M, Kida T, Shimanoe K, Teraoka Y, Yamazoe N. Oxygen permeation properties of Co-free perovskite-type oxide membranes based on BaFe1−yZryO3−δ. J Electrochem Soc 2009;156(5):E81–5.
Liu X, Zhao H, Yang J, Li Y, Chen T, Lu X, Ding W, Li F. Lattice characteristics, structure stability and oxygen permeability of BaFe1−xYxO3−δ ceramic membranes. J Membr Sci 2011;383(1–2):235–40.
Kida T, Yamasaki A, Watanabe K, Yamazoe N, Shimanoe K. Oxygen-permeable membranes based on partially B-site substituted BaFe1−yMyO3−δ (M = Cu or Ni). J Solid State Chem 2010;183(10):2426–31.
Kida T, Takauchi D, Watanabe K, Yuasa M, Shimanoea K, Teraoka Y, Yamazoe N. Oxygen permeation properties of partially A-site substituted BaFeO3−δ perovskites. J Electrochem Soc 2009;156(12):E187–91.
Zhang L, Li X, Zhang L, Song Z, Long W, Jin Y, Wang L. Effects of La doping on electrical conductivity, thermal expansion and electrochemical performance in LaxSr1–xCo0.9Sb0.1O3–δ cathodes for IT–SOFCs. Ceram Int 2017;43(8):6487–93.
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr - Sect A Cryst Phys Diffr Theor Gen Crystallogr 1976;32(5):751–67.
Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 2001;34(2):210–3.
Karppinen M, Matvejeff M, Salomäki K, Yamauchi H. Oxygen content analysis of functional perovskite-derived cobalt oxides. J Mater Chem 2002;12(6):1761–4.
Den Otter MW, Van der Haar LM, Bouwmeester HJM. Numerical evaluation of eigenvalues of the sheet diffusion problem in the surface/diffusion mixed regime. Solid State Ionics 2000;134(3–4):259–64.
Den Otter MW, Bouwmeester HJM, Boukamp BA, Verweij H. Reactor flush time correction in relaxation experiments. J Electrochem Soc 2001;148(2): J1–6.
Hu B, Wang Y, Zhu Z, Xia C, Bouwmeester HJM. Measuring oxygen surface exchange kinetics on mixed-conducting composites by electrical conductivity relaxation. J Mater Chem 2015;3(19):10296–302.
Chen T, Zhao H, Xie Z, et al. Oxygen permeability of Ce0.8Sm0.2O2-δ–LnBaCo2O5+δ (Ln = La, Nd, Sm, and Y) dual-phase ceramic membranes. Ionics 2015;21(6):1683–92.
Zhang Z, Chen Y, Tade MO, Hao Y, Liu S, Shao Z. Tin-doped perovskite mixed conducting membrane for efficient air separation. J Mater Chem 2014;2(25):9666–74.
Xu D, Dong F, Chen Y, Zhao B, Liu S, Tade MO, Shao Z. Cobalt-free niobiumdoped barium ferrite as potential materials of dense ceramic membranes for oxygen separation. J Membr Sci 2014;455:75–82.
Zhang K, Ran R, Ge L, Shao Z, Jin W, Xu N. Systematic investigation on new SrCo1-yNbyO3-δ ceramic membranes with high oxygen semi-permeability. J Membr Sci 2008;323(2):436–43.
Zhao H, Xu N, Cheng Y, Wei W, Chen N, Ding W, Lu X, Li F. Investigation of mixed conductor BaCo0.7Fe0.3-xYxO3-δ with high oxygen permeability. J Phys Chem C 2010;114(41):17975–81.
Li Y, Zhao H, Xu N, et al. Systematic investigation on structure stability and oxygen permeability of Sr-doped BaCo0.7Fe0.2Nb0.1O3-δ ceramic membranes. J Membr Sci 2010;362(1–2):460–70.
Lu J, Yin YM, Yin J, Li J, Zhao J, Ma ZF. Role of Cu and Sr in improving the electrochemical performance of cobalt-free Pr1-xSrxFe1-yCuyO3-δ cathode for intermediate temperature solid oxide fuel cells. J Electrochem Soc 2016;163(2):F44–53.
Gao L, Zhu M, Li Q, Sun L, HuiZhao H, Grenier JC. Electrode properties of Cu-doped Bi0.5Sr0.5FeO3-δ cobalt-free perovskite as cathode for intermediate-temperature solid oxide fuel cells. J Alloy Comp 2017;700:29–36.
Wang SF, Hsu YF, Huang MS, Chang CW, Cheng S. Characteristics of copper-doped SrFe0.75Mo0.25O3-δ ceramic as a cathode material for solid oxide fuel cells. Solid State Ionics 2016;296:120–6.
Albaladejo-Fuentes V, López-Suárez FE, Sánchez-Adsuar MS, JoséIllán-Gómez M. BaTi1-xCuxO3 perovskites: the effect of copper content in the properties and in the NOx storage capacity. Appl Catal A-Gen 2014;488:189–99.
Chen D, Shao Z. Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ mixed conductor. Int J Hydrogen Energy 2011;36(11):6948–56.
Zhu X, Cong Y, Yang W. Oxygen permeability and structural stability of BaCe0.15Fe0.85O3-δ membranes. J membrane Sci 2006;283(1–2):38–44.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).