Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The performance of lithium-ion batteries (LIBs) can be effectively enhanced with functionalized separators. Herein, it is demonstrated that polydopamine-based redox-active (PRA) separators can provide additional capacity to that of typical anode materials, increase the volumetric capacity of the cell, as well as, decrease the cell resistance to yield an improved performance at higher cycling rates. The PRA separators, which are composed of a 2 μm thick electrically insulating nanocellulose fiber (NCF) layer and an 18 μm thick polydopamine (PDA) and carbon nanotube (CNT) containing redox-active layer, are readily produced using a facile paper-making process. The PRA separators are also easily wettable by commonly employed electrolytes (e.g. LP40) and exhibit a high dimensional stability. In addition, the pore structure endows the PRA separator with a high ionic conductivity (i.e. 1.06 mS cm−1) that increases the rate performance of the cells. Due to the presence of the redox-active layer, Li4Ti5O12 (LTO) half-cells containing PRA separator were found to exhibit significantly higher capacities than the corresponding cells containing commercial separators. These results clearly show that the implementation of this type of redox-active separators constitutes a straightforward and effective way to increase the energy and power densities of LIBs.
Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414: 359-67.
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 2011;4: 3243.
Kang K, Meng YS, Bréger J, Grey CP, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006;311: 977-80.
Li H, Wang Z, Chen L, Huang X. Research on advanced materials for Li-ion batteries. Adv Mater 2009;21: 4593-607.
Bruce PG, Scrosati B, Tarascon J-M. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 2008;47: 2930-46.
Scrosati B. Recent advances in lithium ion battery materials. Electrochim Acta 2000;45: 2461-6.
Arora P, Zhang ZJ. Battery separators. Chem Rev 2004;104: 4419-62.
Oh Y-S, Jung GY, Kim J-H, Kim J-H, Kim SH, Kwak SK, Lee S-Y. Janus-faced, dual-conductive/chemically active battery separator membranes. Adv Funct Mater 2016;26: 7074-83.
Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 2014;7: 3857-86.
Zhang SS. A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 2007;164: 351-64.
Huang XS. Separator technologies for lithium-ion batteries. J Solid State Electrochem 2011;15: 649-62.
Ryou MH, Lee YM, Park JK, Choi JW. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv Mater 2011;23: 3066-70.
Dai J, Shi C, Li C, Shen X, Peng L, Wu D, Sun D, Zhang P, Zhao J. A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine-ceramic composite modification of polyolefin membranes. Energy Environ Sci 2016;9: 3252-61.
Wang Z, Guo F, Chen C, Shi L, Yuan S, Sun L, Zhu J. Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability. ACS Appl Mater Interfaces 2015;7: 3314-22.
Fu D, Luan B, Argue S, Bureau MN, Davidson IJ. Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources 2012;206: 325-33.
Wei X, Nie Z, Luo Q, Li B, Chen B, Simmons K, Sprenkle V, Wang W. Nanoporous polytetrafluoroethylene/silica composite separator as a high-performance all-vanadium redox flow battery membrane. Adv. Energy Mater. 2013;3: 1215-20.
Janakiraman S, Surendran A, Ghosh S, Anandhan S, Venimadhav A. Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency. Solid State Ionics 2016;292: 130-5.
Chun S-J, Choi E-S, Lee E-H, Kim JH, Lee S-Y, Lee S-Y. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J Mater Chem 2012;22: 16618.
Zhang B, Wang Q, Zhang J, Ding G, Xu G, Liu Z, Cui G. A superior thermostable and nonflammable composite membrane towards high power battery separator. Nano Energy 2014;10: 277-87.
Pan RJ, Cheung O, Wang ZH, Tammela P, Huo JX, Lindh J, Edstrom K, Stromme M, Nyholm L. Mesoporous Cladophora cellulose separators for lithium-ion batteries. J Power Sources 2016;321: 185-92.
Wang Z, Pan R, Xu C, Ruan C, Edström K, Strømme M, Nyholm L. Conducting polymer paper-derived separators for lithium metal batteries. Energy Storage Mater 2018;13: 283-92.
Su YS, Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 2012;3: 1166.
Chung S-H, Manthiram A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv Funct Mater 2014;24: 5299-306.
Kim JH, Gu M, Lee do H, Kim JH, Oh YS, Min SH, Kim BS, Lee SY. Functionalized nanocellulose-integrated heterolayered nanomats toward smart battery separators. Nano Lett 2016;16: 5533-41.
Bai S, Liu X, Zhu K, Wu S, Zhou H. Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 2016;1: 16094.
Bai S, Zhu K, Wu S, Wang Y, Yi J, Ishida M, Zhou H. A long-life lithium-sulphur battery by integrating zinc-organic framework based separator. J Mater Chem A 2016;4: 16812-16817.
Huang J-Q, Zhuang T-Z, Zhang Q, Peng H-J, Chen C-M, Wei F. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano 2015;9: 3002-11.
Zeng F, Jin Z, Yuan K, Liu S, Cheng X, Wang A, Wang W, Yang Y-s. High performance lithium-sulfur batteries with a permselective sulfonated acetylene black modified separator. J Mater Chem A 2016;4: 12319-27.
Xu Q, Hu GC, Bi HL, Xiang HF. A trilayer carbon nanotube/Al2O3/polypropylene separator for lithium-sulfur batteries. Ionics 2015;21: 981-6.
Xiang Y, Li J, Lei J, Liu D, Xie Z, Qu D, Li K, Deng T, Tang H. Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress. ChemSusChem 2016;9: 3023-39.
Wu H, Zhuo D, Kong D, Cui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat Commun 2014;5: 5193.
Liu K, Zhuo D, Lee HW, Liu W, Lin D, Lu Y, Cui Y. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator. Adv Mater 2016;29: 1603897.
Wang Z, Pan R, Ruan C, Edström K, Strømme M, Nyholm L. Redox-active separators for lithium-ion batteries. Adv Sci 2018;5: 1700663.
Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L. Wood-derived materials for green Electronics, biological devices, and energy applications. Chem Rev 2016;116: 9305-74.
Wang Z, Tammela P, Strømme M, Nyholm L. Cellulose-based supercapacitors: material and performance considerations. Adv Energy Mater 2017;7: 1700130.
Sun T, Li Zj, Wang Hg, Bao D, Meng Fl, Zhang Xb. A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew Chem 2016;128: 10820-24.
Renault S, Oltean VA, Araujo CM, Grigoriev A, Edström K, Brandell D. Superlithiation of organic electrode materials: the case of dilithium benzenedipropiolate. Chem Mater 2016;28: 1920-6.
Wang Z, Xu C, Tammela P, Huo J, Strømme M, Edström K, Gustafsson T, Nyholm L. Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. J Mater Chem A 2015;3: 14109-15.
Lee JM, Nguyen DQ, Lee SB, Kim H, Ahn BS, Lee H, Kim HS. Cellulose triacetate-based polymer gel electrolytes. J Appl Polym Sci 2010;115: 32-6.
Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A. Ultrafast all-polymer paper-based batteries. Nano Lett 2009;9: 3635-9.
Wang Z, Tammela P, Zhang P, Strømme M, Nyholm L. Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole–nanocellulose electrodes. J Mater Chem A 2014;2: 7711-6.
Pan R, Xu X, Sun R, Wang Z, Lindh J, Edstrom K, Stromme M, Nyholm L. Nanocellulose modified polyethylene separators for lithium metal batteries. Small 2018;14: 1704371.
Chen W, Yu H, Lee S-Y, Wei T, Li J, Fan Z. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 2018;47: 2837-72.
Wang Z, Pan R, Sun R, Edström K, Strømme M, Nyholm L. Nanocellulose structured paper-based lithium metal batteries. ACS Appl Energy Mater 2018;1: 4341-50.
Liu X, Cao J, Li H, Li J, Jin Q, Ren K, Ji J. Mussel-Inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano 2013;7: 9384-95.
Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007;318: 426-30.
Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao H, Pennycook SJ, Dai S. Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew Chem Int Ed 2011;50: 6799-802.
Barclay TG, Hegab HM, Clarke SR, Ginic-Markovic M. Versatile surface modification using polydopamine and related polycatecholamines: chemistry, structure, and applications. Adv. Mater. Interfaces 2017;4: 1601192.
Liu T, Kim KC, Lee B, Chen Z, Noda S, Jang SS, Lee SW. Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energy Environ Sci 2017;10: 205-15.
Ek R, Gustafsson C, Nutt A, Iversen T, Nyström C. Cellulose powder from Cladophora sp. algae. J Mol Recogn 1998;11: 263-5.
Mihranyan A. Cellulose from cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 2011;119: 2449-60.
Liu Q, Wang N, Caro J, Huang A. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. J Am Chem Soc 2013;135: 17679-82.
Zhou J, Wang P, Wang C, Goh YT, Fang Z, Messersmith PB, Duan H. Versatile core–shell Nanoparticle@Metal–organic framework nanohybrids: exploiting mussel-inspired polydopamine for tailored structural integration. ACS Nano 2015;9: 6951-60.
Liu M, Zeng G, Wang K, Wan Q, Tao L, Zhang X, Wei Y. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale 2016;8: 16819-40.
Pan RJ, Wang ZH, Sun R, Lindh J, Edstrom K, Stromme M, Nyholm L. Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose 2017;24: 2903-11.
Jacques E, Hellqvist Kjell M, Zenkert D, Lindbergh G, Behm M. Expansion of carbon fibres induced by lithium intercalation for structural electrode applications. Carbon 2013;59: 246-54.
Takami N, Satoh A, Ohsaki T, Kanda M. Lithium insertion and extraction for high-capacity disordered carbons with large hysteresis. Electrochim Acta 1997;42: 2537-43.
Zheng T, McKinnon WR, Dahn JR. Hysteresis during lithium insertion in hydrogen-containing carbons. J Electrochem Soc 1996;143: 2137-45.
Wang Z, Xiong X, Qie L, Huang Y. High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole. Electrochim Acta 2013;106: 320-6.
Yoshio M, Wang H, Fukuda K, Hara Y, Adachi Y. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J Electrochem Soc 2000;147: 1245-50.
Rouquerol J, Avnir D, Fairbridge C, Everett D, Haynes J, Pernicone N, Ramsay J, Sing K, Unger K. Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 1994;66: 1739-58.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).