Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A self-standing, flexible and lithium dendrite growth-suppressing composite gel polymer electrolyte membrane was designed for the use of room-temperature lithium ion batteries. The multi-functional composite semi-interpenetrating polymer network (referred to as "Cs-IPN") electrolyte membrane was fabricated by combining a UV-cured ethoxylated trimethylolpropane triacrylate (ETPTA) macromer with alumina nanoparticles in the presence of liquid electrolyte and thermoplastic linear poly(ethylene oxide) (PEO). The polymer electrolyte membrane exhibits a semi-interpenetrating polymer network structure and a higher room temperature ionic conductivity, which impart the electrolyte with a significant cycling (120 mAh g−1 after 200 cycles) and a remarkable rate (137 mAh g−1 at 0.1 ℃, 130 mAh g−1 at 0.5 ℃, 119 mAh g−1 at 1 ℃ and 100 mAh g−1 at 2 ℃) performance in Li/LiFePO4 battery. More importantly, the polymer electrolyte possesses superior ability to inhibit the growth of lithium dendrites, which makes it promising for next generation lithium ion batteries.
Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources 2010;195: 2419-30. https://doi.org/10.1016/j.jpowsour.2009.11.048.
Scrosati B, Hassoun J, Sun YK. Lithium-ion batteries. A look into the future. Energy Environ Sci 2011;4: 3287-95. https://doi.org/10.1039/C1EE01388B.
Chen RJ, Zhao T, Wu F. From a historic review to horizons beyond: lithiumsulphur batteries run on the wheels. Chem Commun 2015;51: 18-33. https://doi.org/10.1039/c4cc05109b.
Guo YP, Li HQ, Zhai TY. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater 2017;29. 201700007, https://doi.org/10.1002/adma.201700007.
Lin DC, Liu YY, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 2017;12: 194-206. https://doi.org/10.1038/nnano.2017.16.
Li ZH, Ju L, Xu YH, Wu J, Wang HW, Li DC, Zheng JW. Suppression of the dendrite formation on the lithium metal anode for rechargeable lithium battery. Rare Metal Mater Eng 2011;40: 503-6.
Meesala Y, Jena A, Chang H, Liu RS. Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett 2017;2:2734-51. https://doi.org/10.1021/acsenergylett.7b00849.
Pan QW, Barbash D, Smith DM, Qi H, Gleeson SE, Li CY. Correlating electrodeelectrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries. Adv Energy Mater 2017;7:1361. https://doi.org/10.1002/aenm.201701231.
Kalhoff J, Eshetu GG, Bresser D, Passerini S. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. Chemsuschem 2015;8:2154-75. https://doi.org/10.1002/cssc.201500284.
Lu QW, Fang JH, Yang J, Yan GW, Liu SS, Wang JL. A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries. J Membr Sci 2013;425:105-12. https://doi.org/10.1016/j.memsci.2012.09.038.
Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energ Storage Mater 2016;5:139-64. https://doi.org/10.1016/j.ensm.2016.07.003.
Fan L, Wei SY, Li SY, Li Q, Lu YY. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater 2018;8. 201702657, https://doi.org/10.1002/aenm.201702657.
Chi S, Liu Y, Zhao N, Guo X, Nan C, Fan L. Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Materials 2018. https://doi.org/10.1016/j.ensm.2018.07.004.
Mauger A, Armand M, Julien CM, Zaghib K. Challenges and issues facing lithium metal for solid-state rechargeable batteries. J Power Sources 2017;353:333-42. https://doi.org/10.1016/j.jpowsour.2017.04.018.
Liu R, He P, Wu Z, Guo F, Huang B, Wang Q, Huang Z, Wang C-a, Li Y. PEO/ hollow mesoporous polymer spheres composites as electrolyte for all solid state lithium ion battery. J Electroanal Chem 2018;822:105-11. https://doi.org/10.1016/j.jelechem.2018.05.021.
Kim SH, Choi KH, Cho SJ, Kil EH, Lee SY. Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries. J Mater Chem 2013;1:4949-55. https://doi.org/10.1039/C3TA10612H.
Zhu P, Yan CY, Dirican M, Zhu JD, Zang J, Selvan RK, Chung CC, Jia H, Li Y, Kiyak Y, Wu NQ, Zhang XW. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J Mater Chem 2018;6:4279-85. https://doi.org/10.1039/c7ta10517g.
Oh S, Kim DW, Lee C, Lee MH, Kang Y. Poly(vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries. Electrochim Acta 2011;57:46-51. https://doi.org/10.1016/j.electacta.2011.05.029.
Goujon LJ, Khaldi A, Maziz A, Plesse C, Nguyen GTM, Aubert PH, Vidal F, Chevrot C, Teyssie D. Flexible solid polymer electrolytes based on nitrile butadiene rubber/poly(ethylene oxide) interpenetrating polymer networks containing either LiTFSI or EMITFSI. Macromolecules 2011;44:9683-91. https://doi.org/10.1021/ma201662h.
Choudhury S, Mangal R, Agrawal A, Archer LA. A highly reversible roomtemperature lithium metal battery based on crosslinked hairy nanoparticles. Nat Commun 2015;6:10101. https://doi.org/10.1038/ncomms10101.
Nair JR, Destro M, Bella F, Appetecchi GB, Gerbaldi C. Thermally cured semiinterpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries. J Power Sources 2016;306:258-67. https://doi.org/10.1016/j.jpowsour.2015.12.001.
Gerbaldi C, Nair JR, Ahmad S, Meligrana G, Bongiovanni R, Bodoardo S, Penazzi N. UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. J Power Sources 2010;195: 1706-13. https://doi.org/10.1016/j.jpowsour.2009.09.047.
Zhou D, Liu RL, He YB, Li FY, Liu M, Li BH, Yang QH, Cai Q, Kang FY. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv Energy Mater 2016;6. 201502214, https://doi.org/10.1002/aenm.201502214.
Choi ES, Lee SY. Particle size-dependent, tunable porous structure of a SiO2/ poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery. J Mater Chem 2011;21:14747-54. https://doi.org/10.1039/C1JM12246K.
Osada I, de Vries H, Scrosati B, Passerini S. Ionic-liquid-based polymer electrolytes for battery applications. Angew Chem Int Ed 2016;55:500-13. https://doi.org/10.1002/anie.201504971.
Wang ZY, Zhang WK, Li XL, Gao LZ. Recent progress in flexible energy storage materials for lithium-ion batteries and electrochemical capacitors: a review. J Mater Res 2016;31:1648-64. https://doi.org/10.13039/501100004480.
Chen N, Dai YJ, Xing Y, Wang LL, Guo C, Chen RJ, Guo SJ, Wu F. Biomimetic antnest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy Environ Sci 2017;10:1660-7. https://doi.org/10.1039/C7EE00988G.
Lin ZY, Guo XW, Yu HJ. Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery. Nanomater Energy 2017;41:646-53. https://doi.org/10.1016/j.nanoen.2017.10.021.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).