Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ag/Ta2O5/CuO/Pt memristive devices with Ag point contacts at the interface exhibit forming-free and partial volatile analog resistive switching properties. Versatile synaptic functions, like the short-term plasticity, the long-term potentiation and the paired-pulse facilitation, are emulated with these devices. The Ag point contacts in the Ta2O5 layer are verified through transmission electron microscope (TEM) and X-ray photoelectron spectroscope (XPS). The Ag point contacts at the interface endow the device the transition from the electrochemical metallization mode to the valence change mode, and the analog resistive switching behavior and neuromorphic functions. This interface engineering of introducing point contacts at the interface provides a way for the development of neuromorphic devices with low power consumption.
Zhu L, Zhou J, Guo Z, Sun Z. An overview of materials issues in resistive random access memory. J Materiomics 2015;1(4):285–95.
Wang Z, Wang L, Nagai M, Xie L, Yi M, Huang W. Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv Electron Mater 2017;3(7):1600510.
Yang R, Huang H-M, Hong Q-H, Yin X-B, Tan Z-H, Shi T, et al. Synaptic suppression triplet-STDP learning rule realized in second-order memristors. Adv Funct Mater 2018;28(5):1704455.
Waser R, Aono M. Nanoionics-based resistive switching memories. Nat Mater 2007;6(11):833–40.
Liu CS, Yan X, Song XF, Ding SJ, Zhang DW, Zhou P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nanotechnol 2018;13(5):404–10.
Li XY, Wu HQ, Gao B, Wu W, Wu D, Deng N, et al. Electrode-induced digital-to-analog resistive switching in TaOx-based RRAM devices. Nanotechnology 2016;27(30):305201.
Wedig A, Luebben M, Cho DY, Moors M, Skaja K, Rana V, et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat Nanotechnol 2016;11(1):67–75.
Waser R, Dittmann R, Staikov G, Szot K. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv Mater 2009;21(25–26):2632–63.
Tsuruoka T, Terabe K, Hasegawa T, Aono M. Temperature effects on the switching kinetics of a Cu-Ta2O5-based atomic switch. Nanotechnology 2011;22(25):425205.
Liu Q, Sun J, Lv HB, Long S, Yin K, Wan N, et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolytebased ReRAM. Adv Mater 2012;24(14):1844–9.
Gao S, Liu G, Chen QL, Xue WH, Yang HL, Shang J, et al. Improving unipolar resistive switching uniformity with cone shaped conducting filaments and its logic-in-memory application. ACS Appl Mater Interfaces 2018;10(7):6453–62.
Wang Y, Lv Z, Liao Q, Shan H, Chen J, Zhou Y, et al. Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv Mater 2018;30(28):1800327.
Wang M, Cai S, Pan C, Wang C, Lian X, Zhou Y, et al. Robust memristors based on layered two-dimensional materials. Nat Electron 2018;1:130–6.
Gao B, Chen B, Liu R, Zhang FF, Huang P, Liu LF, et al. 3-D cross-point Array operation on AlOy/HfOx-based vertical resistive switching memory. IEEE Trans Electron Dev 2014;61(5):1377–81.
Yang CS, Shang DS, Liu N, Shi G, Shen X, Yu RC, et al. A synaptic transistor based on quasi-2d molybdenum oxide. Adv Mater 2017;29(27):1700906.
Tan ZH, Yang R, Terabe K, Yin XB, Zhang XD, Guo X. Synaptic metaplasticity realized in oxide memristive devices. Adv Mater 2016;28(2):377–84.
Shi Y, Liang X, Yuan B, Chen V, Li H, Hui F, et al. Electronic synapses made of layered two dimensional materials. Nat Electron 2018;1:458–65.
Zhu LQ, Wan CJ, Guo LQ, Shi Y, Wan Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat Commun 2014;5:3158.
Yao P, Wu HQ, Gao B, Eryilmaz SB, Huang X, Zhang W, et al. Face classification using electronic synapses. Nat Commun 2017;8:15199.
Tian H, Zhao LF, Wang XF, Yeh YW, Yao N, Rand BP, et al. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 2017;11(12):12247–56.
Li QJ, Khiat A, Salaoru I, Papavassiliou C, Hui X, Prodromakis T. Memory impedance in TiO2 based metal-insulator-metal devices. Sci Rep 2014;4:4522.
Sawa A. Resistive switching in transition metal oxides. Mater Today 2008;11:28–36.
Valov I. Interfacial interactions and their impact on redox-based resistive switching memories (ReRAMs). Semicond Sci Tech 2017;32(9), 093006.
Yang R, Li XM. Improvement of resistance switching properties for metal/La0.7Ca0.3MnO3/Pt devices. Phys Status Solidi A 2011;208(5):1041–6.
Egoroy KV, Kuzmichev DS, Chizhov PS, Lebedinskii YY, Hwang CS, Markeev AM. In situ control of oxygen vacancies in TaOx thin films via plasma-enhanced atomic layer deposition for resistive switching memory applications. ACS Appl Mater Interfaces 2017;9(15):13286–92.
Wang ZW, Yin MH, Zhang T, Cai Y, Wang Y, Yang Y, et al. Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing. Nanoscale 2016;8(29):14015–22.
Mikheev E, Hoskins BD, Strukov DB, Stemmer S. Resistive switching and its suppression in Pt/Nb: SrTiO3 junctions. Nat Commun 2014;5:3990.
Baeumer C, Raab N, Menke T, Schmitz C, Rosezin R, Müller P, et al. Verification of redox-processes as switching and retention failure mechanisms in Nb: SrTiO3/metal devices. Nanoscale 2016;8(29):13967–75.
Yin J, Zeng F, Wan Q, Li F, Sun Y, Hu Y, et al. Adaptive crystallite kinetics in homogenous bilayer oxide memristor for emulating diverse synaptic plasticity. Adv Funct Mater 2018;28(19):1706927.
Hu SG, Liu Y, Liu Z, Chen TP, Wang JJ, Yu Q, et al. Associative memory realized by a reconfigurable memristive Hopfield neural network. Nat Commun 2015;6:7522.
Yang JJ, Pickett MD, Li XM, Ohlberg DAA, Stewart DR, Williams RS. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 2008;3(7):429–33.
Hong DS, Chen YS, Sun JR, Shen BG. Ternary synaptic plasticity arising from memdiode behavior of TiOx single nanowires. Adv Electron Mater 2016;2(4):1500359.
Lu W, Wong L-M, Wang S, Zeng K. Effects of oxygen and moisture on the Ⅰ-Ⅴ characteristics of TiO2 thin films. J Materiomics 2018;4(3):228–37.
Yang R, Terabe K, Liu G, Tsuruoka T, Hasegawa T, Gimzewski JK, et al. Ondemand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. ACS Nano 2012;6(11):9515–21.
Wang ZQ, Xu HY, Zhang L, Li XH, Ma JG, Zhang XT, et al. Performance improvement of resistive switching memory achieved by enhancing localelectric-field near electromigrated Ag-nanoclusters. Nanoscale 2013;5(10):4490–4.
Terabe K, Hasegawa T, Nakayama T, Aono M. Quantized conductance atomic switch. Nature 2005;433(7021):47–50.
Nayak A, Tsuruoka T, Terabe K, Hasegawa T, Aono M. Switching kinetics of a Cu2S-based gap-type atomic switch. Nanotechnology 2011;22(23):235201.
Tsuruoka T, Terabe K, Hasegawa T, Aono M. Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology 2010;21(42):425205.
Soni R, Meuffels P, Kohlstedt H, Kugeler C, Waser R. Reliability analysis of the low resistance state stability of Ge0.3Se0.7 based solid electrolyte nonvolatile memory cells. Appl Phys Lett 2009;94(12):123503.
Yang JJ, Miao F, Pickett MD, Ohlberg DAA, Stewart DR, Lau CN, et al. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 2009;21(33):215201.
Wu SJ, Wang F, Zhang ZC, Li Y, Han Y-M, Yang Z-C, et al. High uniformity and forming-free ZnO-based transparent RRAM with HfOx inserting layer. Chin Phys B 2018;27(8), 087701.
Bousoulas P, Michelakaki I, Skotadis E, Tsigkourakos M, Tsoukalas D. Low-power forming free TiO2-x/HfO2-y/TiO2-x-Trilayer RRAM devices exhibiting synaptic property characteristics. IEEE Trans Electron Dev 2017;64(8):3151–8.
Yun MJ, Kim KH, Kim S, Kim HD. Forming-free one-selector/one-resistor characteristics of oxygen-rich ITO based transparent resistive switching memory via defect engineering using the reactive sputtering process. J Nanosci Nanotechno 2018;18(9):5947–52.
Kumar A, Mukherjee S, Kranti A. Effects of bulk-defects and metal/bulk interface anomalies in a forming-free double-barrier memristor. J Phys D Appl Phys 2018;51(40):405601.
Guo JJ, Ren SX, Wu LQ, Kang X, Chen W, Zhao X. Low-power, high-uniform, and forming-free resistive memory based on Mg-deficient amorphous MgO film with rough surface. Appl Surf Sci 2018;434:1074–8.
Wan ZN, Darling RB, Majumdar A, Anantram MP. A forming-free bipolar resistive switching behavior based on ITO/V2O5/ITO structure. Appl Phys Lett 2017;111(4), 041601.
Wang Z, Joshi S, Savel'ev SE, Hao J, Rivu M, Peng L, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater 2017;16:101–8.
Fujimoto M, Koyama H, Nishi Y, Suzuki T. Resistive switching properties of high crystallinity and low-resistance Pr0.7Ca0.3MnO3 thin film with pointcontacted Ag electrodes. Appl Phys Lett 2007;91(22):223504.
Shang DS, Chen LD, Wang Q, Wu ZH, Zhang WQ, Li XM. Asymmetric fatigue and its endurance improvement in resistance switching of Ag-La0.7Ca0.3MnO3-Pt heterostructures. J Phys D Appl Phys 2007;40(17):5373–6.
Yang R, Li XM, Yu WD, Liu XJ, Gao XD, Wang Q, et al. Resistance-switching properties of La0.67Ca0.33MnO3 thin films with Ag-Al alloy top electrodes. Appl Phys A-Mater 2009;97(1):85–90.
He HK, Yang R, Zhou W, Huang H-M, Xiong J, Gan L, et al. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 2018;14(15):1800079.
van de Burgt Y, Lubberman E, Fuller EJ, Keene ST, Faria GC, Agarwal S, et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat Mater 2017;16(4):414–8.
Kuzum D, Jeyasingh RGD, Lee B, Wong H-SP. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett 2012;12(5):2179–86.
Saviane C, Savtchenko LP, Raffaelli G, Voronin LL, Cherubini E. Frequencydependent shift from paired-pulse facilitation to paired-pulse depression at unitary CA3-CA3 synapses in the rat hippocampus. J Physiol-London 2002;544(2):469–76.
Liu YH, Zhu LQ, Feng P, Shi Y, Wan Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater 2015;27(37):5599–604.
Pan B, Zucker RS. A general model of synaptic transmission and short-term plasticity. Neuron 2009;62(4):539–554|.
Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 1998;18(24):10464–72.
Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski JK, Aono M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater 2011;10(10):591–5.
Liu G, Wang C, Zhang W, Pan L, Zhang C, Yang X, et al. Organic biomimicking memristor for information storage and processing applications. Adv Electron Mater 2016;2(2):1500298.
McGaugh JL. Neuroscience-Memory-a century of consolidation. Science 2000;287(5451):248–51.
Yang C-S, Shang D-S, Chai Y-S, Yan L-Q, Shen B-G, Sun Y. Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces. Phys Chem Chem Phys 2016;18(18):12466–75.
Shang DS, Wang Q, Chen LD, Dong R, Li XM, Zhang WQ. Effect of Carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures. Phys Rev B 2006;73(24):245427.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).