Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Potassium-ion batteries (KIBs) represent one of the most promising alternatives to lithium-ion batteries (LIBs) considering the potential low cost and abundant potassium resource. In this work, we demonstrate a core-shell structured sponge cathode for KIBs, where amorphous V2O5 uniformly coats on carbon nanotube (CNT) sponge via atomic layer deposition (ALD). The V2O5@CNT sponge shows several advantages as cathode: (1) the three-dimensional (3D) conductive network of CNT sponge offers a fast electron transport pathway, (2) the porous nature and high surface area of CNT sponge enables enough access for electrolyte to V2O5, (3) the amorphous structure of V2O5 offers a fast kinetics upon K-ion insertion/deinsertion. The V2O5@CNT sponge cathode delivers a high capacity of 206 mA h/g and moderate cycling and rate performance in common carbonate-based electrolyte system.
Eftekhari A, Jian Z, Ji X. Potassium secondary batteries. ACS Appl Mater Interfaces 2017;9:4404–19.
Lyu Y, Liu Y, Cheng T, Guo B. High-throughput characterization methods for lithium batteries. J Materiomics 2017;3:221–9.
Wang X, Xiao R, Li H, Chen L. Quantitative structure-property relationship study of cathode volume changes in lithium ion batteries using ab-initio and partial least squares analysis. J Materiomics 2017;3:178–83.
Wu X, Leonard DP, Ji X. Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem Mater 2017;29:5031–42.
Tarascon J-M. Is lithium the new gold? Nat Chem 2010;2:510.
Jian Z, Luo W, Ji X. Carbon electrodes for k-ion batteries. J Am Chem Soc 2015;137:11566–9.
Ji B, Zhang F, Wu N, Tang Y. A dual-carbon battery based on potassium-ion electrolyte. Adv Energy Mater 2017;7. 1700920-n/a.
Chen K, Xue D. Searching for electrode materials with high electrochemical reactivity. J Materiomics 2015;1:170–87.
Eftekhari A. Potassium secondary cell based on prussian blue cathode. J Power Sources 2004;126:221–8.
Mazzarese J, Popovych O. Standard potentials of li, na, and k electrodes and transfer free-energies of licl, nacl, and kcl in selected ethanol-water and methanol-water solvents. J Electrochem Soc 1983;130:2032–7.
Jian Z, Hwang S, Li Z, Hernandez AS, Wang X, Xing Z, et al. Harde–soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv Funct Mater 2017;27:1700324.
Wessells CD, Peddada SV, Huggins RA, Cui Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett 2011;11:5421–5.
Nikitina VA, Kuzovchikov SM, Fedotov SS, Khasanova NR, Abakumov AM, Antipov EV. Effect of the electrode/electrolyte interface structure on the potassium-ion diffusional and charge transfer rates: towards a high voltage potassium-ion battery. Electrochim Acta 2017;258:814–24.
Su D, McDonagh A, Qiao SZ, Wang G. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv Mater 2017:29.
Bie X, Kubota K, Hosaka T, Chihara K, Komaba S. A novel k-ion battery: hexacyanoferrate(ⅱ)/graphite cell. J Mater Chem 2017;5:4325–30.
Mathew V, Kim S, Kang J, Gim J, Song J, Baboo JP, et al. Amorphous iron phosphate: potential host for various charge Carrier ions. NPG Asia Mater 2014;6. e138.
Han J, Niu Y, Bao S-j, Yu Y-N, Lu S-Y, Xu M. Nanocubic kti2(po4)3 electrodes for potassium-ion batteries. Chem Commun (J Chem Soc Sect D) 2016;52:11661–4.
Han J, Li GN, Liu F, Wang M, Zhang Y, Hu L, et al. Investigation of k3v2(po4)3/c nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem Commun (J Chem Soc Sect D) 2017;53:1805–8.
Han J, Xu M, Niu Y, Li G-N, Wang M, Zhang Y, et al. Exploration of k2ti8o17 as an anode material for potassium-ion batteries. Chem Commun (J Chem Soc Sect D) 2016;52:11274–6.
Jian Z, Liang Y, Rodríguez-Pérez IA, Yao Y, Ji X. Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries. Electrochem Commun 2016;71:5–8.
Xing Z, Jian Z, Luo W, Qi Y, Bommier C, Chong ES, et al. A perylene anhydride crystal as a reversible electrode for k-ion batteries. Energy Storage Mater 2016;2:63–8.
Chen Y, Luo W, Carter M, Zhou L, Dai J, Fu K, et al. Organic electrode for nonaqueous potassium-ion batteries. Nanomater Energy 2015;18:205–11.
Raju V, Rains J, Gates C, Luo W, Wang X, Stickle WF, et al. Superior cathode of sodium-ion batteries: orthorhombic v2o5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett 2014;14:4119–24.
Tian B, Tang W, Su C, Li Y. Reticular v2o5.0.6h2o xerogel as cathode for rechargeable potassium ion batteries. ACS Appl Mater Interfaces 2018;10:642–50.
Xue L, Li Y, Gao H, Zhou W, Lü X, Kaveevivitchai W, et al. Low-cost high-energy potassium cathode. J Am Chem Soc 2017;139:2164–7.
Koch D, Kulish VV, Manzhos S. A first-principles study of potassium insertion in crystalline vanadium oxide phases as possible potassium-ion battery cathode materials. MRS Comm 2017;7:819–25.
Charles DS, Feygenson M, Page K, Neuefeind J, Xu W, Teng X. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage. Nat Commun 2017;8:15520.
Liu J, Xia H, Xue D, Lu L. Double-shelled nanocapsules of v2o5-based composites as high-performance anode and cathode materials for li ion batteries. J Am Chem Soc 2009;131:12086–7.
Yan J, Sumboja A, Khoo E, Lee PS. V2o5 loaded on sno2 nanowires for high-rate li ion batteries. Adv Mater 2011;23:746–50.
Karki K, Zhu Y, Liu Y, Sun C-F, Hu L, Wang Y, et al. Hoop-strong nanotubes for battery electrodes. ACS Nano 2013;7:8295–302.
Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, et al. Carbon nanotube sponges. Adv Mater 2010;22:617–21.
Whittingham MS, Song Y, Lutta S, Zavalij PY, Chernova NA. Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J Mater Chem 2005;15:3362–79.
Zhang C, Xu Y, Zhou M, Liang L, Dong H, Wu M, et al. Potassium prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries. Adv Funct Mater 2017;27:1604307.
Clites M, Pomerantseva E. Bilayered vanadium oxides by chemical preintercalation of alkali and alkali-earth ions as battery electrodes. Energy Storage Mater 2018;11:30–7.
Chen X, Zhu H, Chen Y-C, Shang Y, Cao A, Hu L, et al. Mwcnt/V2O5 core/shell sponge for high areal capacity and power density li-ion cathodes. ACS Nano 2012;6:7948–55.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).