AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Full Length Article | Open Access

Machine learning-guided accelerated discovery of structure-property correlations in lean magnesium alloys for biomedical applications

Sreenivas Raguramana,b( )Maitreyee Sharma PriyadarshinicTram Nguyena,dRyan McGoverneAndrew KimaAdam J. GriebelfPaulette Clancyb,cTimothy P. Weihsa,b,g( )
Department of Materials Science and Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, 21218, MD, U.S.A
Hopkins Extreme Materials Institute, Johns Hopkins University, 3400 N Charles St, Baltimore, 21218, MD, U.S.A
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, 21218, MD, U.S.A
Translational Tissue Engineering Center, Johns Hopkins School of Medicine, 400 N Broadway, Baltimore, 21231, MD, U.S.A
Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, 21218, MD, U.S.A
Research and Development, Fort Wayne Metals Research Products, LLC, 9609 Ardmore Ave, Fort Wayne, 46809, IN, U.S.A
Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, 21218, MD, U.S.A
Show Author Information

Abstract

Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability, biocompatibility, and impressive mechanical characteristics. However, their rapid in-vivo degradation presents challenges, notably in upholding mechanical integrity over time. This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy, ZX10. Utilizing rapid, cost-efficient characterization methods like X-ray diffraction and optical microscopy, we swiftly examine microstructural changes post-thermal treatment. Employing Pearson correlation coefficient analysis, we unveil the relationship between microstructural properties and critical targets (properties): hardness and corrosion resistance. Additionally, leveraging the least absolute shrinkage and selection operator (LASSO), we pinpoint the dominant microstructural factors among closely correlated variables. Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca2Mg6Zn3 phase in corrosion behavior. This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases. This thorough investigation furnishes valuable insights into the intricate interplay of processing, structure, and properties in magnesium alloys, thereby advancing the development of superior biodegradable implant materials.

References

[1]
F. Witte, Acta Biomaterialia 6 (5) (2010) 1680–1692, doi: 10.1016/j.actbio.2010.02.028. https://www.sciencedirect.com/science/article/pii/S1742706110000966.
[2]
Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, Journal of Magnesium and Alloys 9 (3) (2021) 705–747, doi: 10.1016/j.jma.2021.04.001. https://www.sciencedirect.com/science/article/pii/S2213956721000979.
[3]

J. Hofstetter, M. Becker, E. Martinelli, A.M. Weinberg, B. Mingler, H. Kilian, S. Pogatscher, P.J. Uggowitzer, J.F. Löffler, JOM 66 (4) (2014) 566–572, doi: 10.1007/s11837-014-0875-5.

[4]
J. Hofstetter, S. Rüedi, I. Baumgartner, H. Kilian, B. Mingler, E. Povoden-Karadeniz, S. Pogatscher, P.J. Uggowitzer, J.F. Löffler, Acta Materialia 98 (2015) 423–432, doi: 10.1016/j.actamat.2015.07.021. https://www.sciencedirect.com/science/article/pii/S1359645415004838.
[5]
G. Song, Corrosion Science 49 (4) (2007) 1696–1701, doi: 10.1016/j.corsci.2007.01.001. https://www.sciencedirect.com/science/article/pii/S0010938X07000029.
[6]
S. Prasadh, S. Raguraman, R. Wong, M. Gupta, Metals 12 (6) (2022) 999, doi: 10.3390/met12060999. Number: 6 Publisher: Multidisciplinary Digital Publishing Institute
[7]
S. Prasadh, S. Raguraman, R. Wong, M. Gupta, in: L.M. Pandey, A. Hasan (Eds.), Nanoscale Engineering of Biomaterials: Properties and Applications, Springer Nature, Singapore, 2022, pp. 181–205, doi: 10.1007/978-981-16-3667-7_7.
[8]
J. Xue, S. Singh, Y. Zhou, A. Perdomo-Pantoja, Y. Tian, N. Gupta, T.F. Witham, W.L. Grayson, T.P. Weihs, Biofabrication 14 (3) (2022) 034107, doi: 10.1088/1758-5090/ac73b8. Publisher: IOP Publishing
[9]
Whooley, S. (2023). FDA approves bioresorbable metal implant from Bioretec. https://www.massdevice.com/fda-approves-bioresorbable-metal-implant-bioretec/.
[10]
J.J. Bhattacharyya, B. Radhakrishnan, G. Muralidharan, S.R. Agnew, in: M. Alderman, M.V. Manuel, N. Hort, N.R. Neelameggham (Eds.), Magnesium Technology 2014, Springer International Publishing, Cham, 2016, pp. 233–238, doi: 10.1007/978-3-319-48231-6_45.
[11]
Q. Wu, H. Yan, J. Chen, W. Xia, M. Song, B. Su, T. Ding, Microscopy and Microanalysis 26 (5) (2020) 886–894, doi: 10.1017/S1431927620024356. Publisher: Cambridge University Press
[12]
F.J. Humphreys, M.G. Ardakani, Acta Materialia 44 (7) (1996) 2717–2727, doi: 10.1016/1359-6454(95)00421-1.https://www.sciencedirect.com/science/article/pii/1359645495004211.
[13]

Y. Cheng, L. Wang, C. Yang, Y. Bai, H. Wang, W. Cheng, H.R. Tiyyagura, A. Komissarov, K.S. Shin, Journal of Materials Research and Technology (2024).

[14]

S. Dong, Y. Wang, J. Li, Y. Li, L. Wang, J. Zhang, Metals and Materials International 30 (3) (2024) 593–606.

[15]

Y. Guo, M. Sun, W. Zhang, L. Wang, Metals 13 (10) (2023) 1790.

[16]

J. Long, L. Deng, J. Jin, M. Zhang, X. Tang, P. Gong, X. Wang, G. Xiao, Q. Xia, Journal of Magnesium and Alloys (2024).

[17]

X. Mi, L. Dai, X. Jing, J. She, B. Holmedal, A. Tang, F. Pan, Journal of Magnesium and Alloys (2024).

[18]
A. Moses, D. Chen, P. Wan, S. Wang, Materials Today Communications 37 (2023) 107285, doi: 10.1016/j.mtcomm.2023.107285. https://www.sciencedirect.com/science/article/pii/S2352492823019761.
[19]

Z. Pei, J. Yin, Materials & Design 172 (2019) 107759.

[20]
J.S. Suh, B.-C. Suh, J.H. Bae, Y.M. Kim, Materials & Design 225 (2023) 111442, doi: 10.1016/j.matdes.2022.111442. https://www.sciencedirect.com/science/article/pii/S0264127522010656.
[21]
Valipoorsalimi, P., Sari, Y. A., & Pekguleryuz, M. (2023). Mechanical Property Design of Bio-compatible Mg alloys using Machine-Learning Algorithms. ArXiv:2305.12060 [cond-mat] http://arxiv.org/abs/2305.12060. 10.48550/arXiv.2305.12060
[22]

X. Xu, L. Wang, G. Zhu, X. Zeng, Jom 72 (11) (2020) 3935–3942.

[23]

B. Yang, V. Vassilev-Galindo, J. Llorca, npj Computational Materials 10 (1) (2024) 26.

[24]

D. Freedman, R. Pisani, R. Purves, Pisani, R. Purves, 4th edn. WW Norton & Company, New York (2007).

[25]
R. Tibshirani, Journal of the Royal Statistical Society. Series B (Methodological) 58 (1) (1996) 267–288. https://www.jstor.org/stable/2346178.
[26]

C.F. Davis, A.J. Griebel, T.C. Lowe, JOM 72 (7) (2020) 2603–2611, doi: 10.1007/s11837-020-04195-4 .

[27]
Committee, E. Practice for Microetching Metals and Alloys. http://www.astm.org/cgi-bin/resolver.cgi?E407-07R15E1. 10.1520/E0407-07R15E01
[28]
Committee, E. Test Methods for Determining Average Grain Size. http://www.astm.org/cgi-bin/resolver.cgi?E112-13R21. 10.1520/E0112-13R21
[29]
J. Wheeler, E. Mariani, S. Piazolo, D.j. Prior, P. Trimby, M.r. Drury, Journal of Microscopy 233 (3) (2009) 482–494, doi: 10.1111/j.1365-2818.2009.03136.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2818.2009.03136.x.
[30]
N. Otsu, IEEE Transactions on Systems, Man, and Cybernetics 9 (1) (1979) 62–66, doi: 10.1109/TSMC.1979.4310076. Conference Name: IEEE Transactions on Systems, Man, and Cybernetics
[32]
S.R. Agnew, N.E. Peterson, J.J. Bhattacharyya, H. Macdonald, M.A. Wischhusen, Z. Harris, J.T. Burns, M. Webster, Materials Science and Engineering: A 871 (2023) 144900, doi: 10.1016/j.msea.2023.144900. https://www.sciencedirect.com/science/article/pii/S0921509323003246.
[33]
G. Ribárik, J. Gubicza, T. Ungár, Materials Science and Engineering: A 387-389 (2004) 343–347, doi: 10.1016/j.msea.2004.01.089. https://www.sciencedirect.com/science/article/pii/S0921509304005283.
[34]
G. Ribárik, T. Ungár, J. Gubicza, Journal of Applied Crystallography 34 (5) (2001) 669–676, doi: 10.1107/S0021889801011451. Publisher: International Union of Crystallography
[35]

G. Shankar, S. Raguraman, L.A. Barrales-Mora, S. Suwas, JOM 72 (12) (2020) 4559–4573, doi: 10.1007/s11837-020-04447-3.

[36]
S.A. Speakman, Massachusetts Institute of Technology, Cambridge MA (2012). http://prism.mit.edu/XRAY/4%20Profile%20Fitting%20for%20Quantitative%20Analysis.pdf.
[37]
S. Ehtemam-Haghighi, Y. Liu, G. Cao, L.-C. Zhang, Materials & Design 97 (2016) 279–286, doi: 10.1016/j.matdes.2016.02.094. https://www.sciencedirect.com/science/article/pii/S0264127516302180.
[38]
DIN EN ISO 6507-1:2018-07, Metallische Werkstoffe_-Härteprüfung nach Vickers_-Teil_1: Prüfverfahren (ISO_6507-1:2018); Deutsche Fassung EN_iso_6507-1:2018. https://www.beuth.de/de/-/-/280959455.10.31030/2778746
[39]
Committee, J. Guide for Laboratory Immersion Corrosion Testing of Metals. Technical Report ASTM International. http://www.astm.org/cgi-bin/resolver.cgi?G31-72R04. 10.1520/G0031-72R04
[40]
Committee, G. Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. http://www.astm.org/cgi-bin/resolver.cgi?G1-03R17E1. 10.1520/G0001-03R17E01
[41]

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Advances in neural information processing systems 32 (2019).

[42]
A. Bahmani, M. Lotfpour, M. Taghizadeh, W.-J. Kim, Journal of Magnesium and Alloys 10 (10) (2022) 2607–2648, doi: 10.1016/j.jma.2022.09.007. https://www.sciencedirect.com/science/article/pii/S221395672200216X.
[43]
S. Raguraman, R. McGovern, A. Kim, V. Ivanovskaya, T. Nguyen, T. Ayodeji, A. Griebel, T. Weihs, Magnesium Technology 2024, in: A. Leonard, S. Barela, N.R. Neelameggham, V.M. Miller, D. Tolnai (Eds.), The Minerals, Metals & Materials Series, Springer Nature Switzerland, Cham, 2024, pp. 213–216, doi: 10.1007/978-3-031-50240-8_40.
[44]
G. Kapoor, T. Kvackaj, A. Heczel, J. Bidulská, R. Kočiško, Z. Fogarassy, D. Simcak, J. Gubicza, Materials 13 (10) (2020) 2241, doi: 10.3390/ma13102241. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288192/.
[45]
S. Wu, Z. Kou, Q. Lai, S. Lan, S.S. Katnagallu, H. Hahn, S. Taheriniya, G. Wilde, H. Gleiter, T. Feng, Nature Communications 13 (1) (2022) 5468, doi: 10.1038/s41467-022-33257-1. https://www.nature.com/articles/s41467-022-33257-1.
[46]
M. Zemková, R. Král, J. Čížek, J. vSmilauerová, P. Minárik, Open Engineering 8 (1) (2018) 391–394, doi: 10.1515/eng-2018-0044. https://www.degruyter.com/document/doi/10.1515/eng-2018-0044/html?lang=en.
[47]
E. Gerashi, R. Alizadeh, T.G. Langdon, Journal of Magnesium and Alloys 10 (2) (2022) 313–325, doi: 10.1016/j.jma.2021.09.009. https://www.sciencedirect.com/science/article/pii/S2213956721002450.
[48]
W. Zhong, J.-C. Zhao, Acta Materialia 201 (2020) 191–208, doi: 10.1016/j.actamat.2020.09.079. https://www.sciencedirect.com/science/article/pii/S1359645420307813.
[49]
Y. He, Z. Jia, R.E. Sanders, Y. Liu, L. Ding, Y. Xing, Q. Liu, Journal of Alloys and Compounds 703 (2017) 272–279, doi: 10.1016/j.jallcom.2017.01.336. https://www.sciencedirect.com/science/article/pii/S0925838817303857.
[50]
S. Liu, H. Guo, Materials 15 (20) (2022) 7067, doi: 10.3390/ma15207067. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605493/.
[51]
M. Mohammadi Zerankeshi, R. Alizadeh, E. Gerashi, M. Asadollahi, T.G. Langdon, Journal of Magnesium and Alloys 10 (7) (2022) 1737–1785, doi: 10.1016/j.jma.2022.04.010. https://www.sciencedirect.com/science/article/pii/S2213956722001074.
[52]

J.-F. Nie, Metallurgical and Materials Transactions A 43 (11) (2012) 3891–3939, doi: 10.1007/s11661-012-1217-2.

[53]

X. Zhang, M.-X. Guo, J. Zhang, L. Zhuang, Metallurgical and Materials Transactions B 47 (2015), doi: 10.1007/s11663-015-0500-1.

[54]
Q. Chen, R. Chen, J. Su, Q. He, B. Tan, C. Xu, X. Huang, Q. Dai, J. Lu, Journal of Magnesium and Alloys 10 (9) (2022) 2384–2397, doi: 10.1016/j.jma.2022.09.001. https://www.sciencedirect.com/science/article/pii/S2213956722002067.
[55]

D. Panda, R.K. Sabat, S. Suwas, V.D. Hiwarkar, S.K. Sahoo, Philosophical Magazine 99 (11) (2019) 1362–1385, doi: 10.1080/14786435.2019.1581382.

[56]
J.E. Burke, D. Turnbull, Progress in Metal Physics 3 (1952) 220–292, doi: 10.1016/0502-8205(52)90009-9. https://www.sciencedirect.com/science/article/pii/0502820552900099.
[57]
J.J. Bhattacharyya, S.R. Agnew, G. Muralidharan, Acta Materialia 86 (2015) 80–94, doi: 10.1016/j.actamat.2014.12.009. https://www.sciencedirect.com/science/article/pii/S1359645414009264.
[58]
R. Pei, S. Korte-Kerzel, T. Al-Samman, Journal of Materials Science & Technology 50 (2020) 257–270, doi: 10.1016/j.jmst.2020.01.014. https://www.sciencedirect.com/science/article/pii/S1005030220300141.
[59]
J. Bruno, P.R. Rios, Scripta Metallurgica et Materialia 32 (4) (1995) 601–606, doi: 10.1016/0956-716X(95)90844-A. https://www.sciencedirect.com/science/article/pii/0956716X9590844A.
[60]
A.D. Rollett, D.J. Srolovitz, M.P. Anderson, Acta Metallurgica 37 (4) (1989) 1227–1240, doi: 10.1016/0001-6160(89)90117-X. https://www.sciencedirect.com/science/article/pii/000161608990117X.
[61]
D.J. Srolovitz, G.S. Grest, M.P. Anderson, Acta Metallurgica 33 (12) (1985) 2233–2247, doi: 10.1016/0001-6160(85)90185-3. https://www.sciencedirect.com/science/article/pii/0001616085901853.
[62]

P.A. Manohar, M. Ferry, T. Chandra, ISIJ International 38 (9) (1998) 913–924, doi: 10.2355/isijinternational.38.913.

[63]
S. Eswarappa Prameela, P. Yi, Y. Hollenweger, B. Liu, J. Chen, L. Kecskes, D.M. Kochmann, M.L. Falk, T.P. Weihs, Mechanics of Materials 167 (2022) 104203, doi: 10.1016/j.mechmat.2021.104203. https://www.sciencedirect.com/science/article/pii/S0167663621004117.
[64]
I. Toda-Caraballo, E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del Castillo, Acta Materialia 75 (2014) 287–296, doi: 10.1016/j.actamat.2014.04.064. https://www.sciencedirect.com/science/article/pii/S1359645414003279.
[65]
J. Wang, Y. Yuan, T. Chen, L. Wu, X. Chen, B. Jiang, J. Wang, F. Pan, Journal of Magnesium and Alloys 10 (7) (2022) 1786–1820, doi: 10.1016/j.jma.2022.06.015. https://www.sciencedirect.com/science/article/pii/S221395672200158X.
[66]

Z.C. Cordero, B.E. Knight, C.A. Schuh, International Materials Reviews 61 (8) (2016) 495–512, doi: 10.1080/09506608.2016.1191808.

[67]
Wang, C., Zhong, W., Garnett, J., & Zhao, J.-C. (f). HighThroughput Evaluation of Hardening Coefficients of Eight Alloying Elements in Magnesium. Advanced Engineering Materials, n/a, 2300847. https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202300847. 10.1002/adem.202300847
[68]
P. Duley, S. Sanyal, T.K. Bandyopadhyay, S. Mandal, Materials Characterization 172 (2021) 110885, doi: 10.1016/j.matchar.2021.110885. https://www.sciencedirect.com/science/article/pii/S1044580321000152.
[69]
Prameela, S. E., Walker, C. C., DiMarco, C. S., Mallick, D. D., Sun, X., Hernandez, S., Sasaki, T., Wilkerson, J. W., Ramesh, K. T., Pharr, G. M., & Weihs, T. P. (2023). Rapid Quantification of Dynamic and Spall Strength of Metals Across Strain Rates. ArXiv:2309.14296 [cond-mat] http://arxiv.org/abs/2309.14296.
[70]
P. Duley, S. Sanyal, T.K. Bandyopadhyay, S. Mandal, Materials Science and Engineering: A 784 (2020) 139288, doi: 10.1016/j.msea.2020.139288. https://www.sciencedirect.com/science/article/pii/S0921509320303713.
[71]

U. Holzwarth, N. Gibson, Nature Nanotechnology 6 (9) (2011), doi: 10.1038/nnano.2011.145.534–534

[72]
J.F. Nie, Scripta Materialia 48 (8) (2003) 1009–1015, doi: 10.1016/S1359-6462(02)00497-9. https://www.sciencedirect.com/science/article/pii/S1359646202004979.
[73]
P. Zhang, S.X. Li, Z.F. Zhang, Materials Science and Engineering: A 529 (2011) 62–73, doi: 10.1016/j.msea.2011.08.061. https://www.sciencedirect.com/science/article/pii/S0921509311009555.
[74]

G. Nussbaum, P. Sainfort, G. Regazzoni, H. Gjestland, Scripta Metallurgica 23 (7) (1989) 1079–1084.

[75]

J. Peng, Z. Zhang, Z. Liu, Y. Li, P. Guo, W. Zhou, Y. Wu, Scientific Reports 8 (1) (2018) 4196.

[76]
S. Wang, H. Pan, D. Xie, D. Zhang, J. Li, H. Xie, Y. Ren, G. Qin, Journal of Magnesium and Alloys (2023), doi: 10.1016/j.jma.2023.11.002. https://www.sciencedirect.com/science/article/pii/S2213956723002554.
[77]

C.Y. Wang, C.M. Cepeda-Jimenez, M.T. Pérez-Prado, Acta Materialia 194 (2020) 190–206.

[78]
F. Guo, H. Yu, C. Wu, Y. Xin, C. He, Q. Liu, Scientific Reports 7 (1) (2017) 8647, doi: 10.1038/s41598-017-08966-z. Number: 1 Publisher: Nature Publishing Group
[79]

J.J. Vlassak, W.D. Nix, Journal of the Mechanics and Physics of Solids 42 (8) (1994) 1223–1245.

[80]
A. Bahmani, S. Arthanari, K.S. Shin, Journal of Magnesium and Alloys 7 (1) (2019) 38–46, doi: 10.1016/j.jma.2018.11.004. https://www.sciencedirect.com/science/article/pii/S2213956719300015.
[81]
K.D. Ralston, N. Birbilis, C.H.J. Davies, Scripta Materialia 63 (12) (2010) 1201–1204, doi: 10.1016/j.scriptamat.2010.08.035. https://www.sciencedirect.com/science/article/pii/S1359646210005725.
[82]
A. Bahmani, S. Arthanari, K.S. Shin, Journal of Magnesium and Alloys 8 (1) (2020) 134–149, doi: 10.1016/j.jma.2019.12.001. https://www.sciencedirect.com/science/article/pii/S2213956720300050.
[83]

J. Chen, G. Chen, H. Yan, B. Su, X. Gong, B. Zhou, Journal of Materials Engineering and Performance 26 (2017) 4748–4759.

[84]

D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, D.H. Yang, J.F. Fan, corrosion science 53 (1) (2011) 362–373.

[85]

A.D. Südholz, N.T. Kirkland, R.G. Buchheit, N. Birbilis, Electrochemical and Solid-State Letters 14 (2) (2010) C5, doi: 10.1149/1.3523229.

[86]
J. Jiang, X. Geng, X. Zhang, Journal of Magnesium and Alloys 11 (6) (2023) 1906–1930, doi: 10.1016/j.jma.2023.05.011. https://www.sciencedirect.com/science/article/pii/S2213956723001160.
[87]

E. Zhang, L. Yang, Materials Science and Engineering: A 497 (1-2) (2008) 111–118.

[88]

W.-C. Kim, J.-G. Kim, J.-Y. Lee, H.-K. Seok, Materials Letters 62 (25) (2008) 4146–4148.

[89]

M.S. Priyadarshini, O. Romiluyi, Y. Wang, K. Miskin, C. Ganley, P. Clancy, Materials Horizons 11 (3) (2024).

Journal of Magnesium and Alloys
Pages 2267-2283
Cite this article:
Raguraman S, Priyadarshini MS, Nguyen T, et al. Machine learning-guided accelerated discovery of structure-property correlations in lean magnesium alloys for biomedical applications. Journal of Magnesium and Alloys, 2024, 12(6): 2267-2283. https://doi.org/10.1016/j.jma.2024.06.008

152

Views

1

Downloads

9

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 19 April 2024
Revised: 08 June 2024
Accepted: 12 June 2024
Published: 28 June 2024
© 2024 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer review under responsibility of Chongqing University

Return