Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability, biocompatibility, and impressive mechanical characteristics. However, their rapid in-vivo degradation presents challenges, notably in upholding mechanical integrity over time. This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy, ZX10. Utilizing rapid, cost-efficient characterization methods like X-ray diffraction and optical microscopy, we swiftly examine microstructural changes post-thermal treatment. Employing Pearson correlation coefficient analysis, we unveil the relationship between microstructural properties and critical targets (properties): hardness and corrosion resistance. Additionally, leveraging the least absolute shrinkage and selection operator (LASSO), we pinpoint the dominant microstructural factors among closely correlated variables. Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca2Mg6Zn3 phase in corrosion behavior. This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases. This thorough investigation furnishes valuable insights into the intricate interplay of processing, structure, and properties in magnesium alloys, thereby advancing the development of superior biodegradable implant materials.
J. Hofstetter, M. Becker, E. Martinelli, A.M. Weinberg, B. Mingler, H. Kilian, S. Pogatscher, P.J. Uggowitzer, J.F. Löffler, JOM 66 (4) (2014) 566–572, doi: 10.1007/s11837-014-0875-5.
Y. Cheng, L. Wang, C. Yang, Y. Bai, H. Wang, W. Cheng, H.R. Tiyyagura, A. Komissarov, K.S. Shin, Journal of Materials Research and Technology (2024).
S. Dong, Y. Wang, J. Li, Y. Li, L. Wang, J. Zhang, Metals and Materials International 30 (3) (2024) 593–606.
Y. Guo, M. Sun, W. Zhang, L. Wang, Metals 13 (10) (2023) 1790.
J. Long, L. Deng, J. Jin, M. Zhang, X. Tang, P. Gong, X. Wang, G. Xiao, Q. Xia, Journal of Magnesium and Alloys (2024).
X. Mi, L. Dai, X. Jing, J. She, B. Holmedal, A. Tang, F. Pan, Journal of Magnesium and Alloys (2024).
Z. Pei, J. Yin, Materials & Design 172 (2019) 107759.
X. Xu, L. Wang, G. Zhu, X. Zeng, Jom 72 (11) (2020) 3935–3942.
B. Yang, V. Vassilev-Galindo, J. Llorca, npj Computational Materials 10 (1) (2024) 26.
D. Freedman, R. Pisani, R. Purves, Pisani, R. Purves, 4th edn. WW Norton & Company, New York (2007).
C.F. Davis, A.J. Griebel, T.C. Lowe, JOM 72 (7) (2020) 2603–2611, doi: 10.1007/s11837-020-04195-4 .
G. Shankar, S. Raguraman, L.A. Barrales-Mora, S. Suwas, JOM 72 (12) (2020) 4559–4573, doi: 10.1007/s11837-020-04447-3.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Advances in neural information processing systems 32 (2019).
J.-F. Nie, Metallurgical and Materials Transactions A 43 (11) (2012) 3891–3939, doi: 10.1007/s11661-012-1217-2.
X. Zhang, M.-X. Guo, J. Zhang, L. Zhuang, Metallurgical and Materials Transactions B 47 (2015), doi: 10.1007/s11663-015-0500-1.
D. Panda, R.K. Sabat, S. Suwas, V.D. Hiwarkar, S.K. Sahoo, Philosophical Magazine 99 (11) (2019) 1362–1385, doi: 10.1080/14786435.2019.1581382.
P.A. Manohar, M. Ferry, T. Chandra, ISIJ International 38 (9) (1998) 913–924, doi: 10.2355/isijinternational.38.913.
Z.C. Cordero, B.E. Knight, C.A. Schuh, International Materials Reviews 61 (8) (2016) 495–512, doi: 10.1080/09506608.2016.1191808.
U. Holzwarth, N. Gibson, Nature Nanotechnology 6 (9) (2011), doi: 10.1038/nnano.2011.145.534–534
G. Nussbaum, P. Sainfort, G. Regazzoni, H. Gjestland, Scripta Metallurgica 23 (7) (1989) 1079–1084.
J. Peng, Z. Zhang, Z. Liu, Y. Li, P. Guo, W. Zhou, Y. Wu, Scientific Reports 8 (1) (2018) 4196.
C.Y. Wang, C.M. Cepeda-Jimenez, M.T. Pérez-Prado, Acta Materialia 194 (2020) 190–206.
J.J. Vlassak, W.D. Nix, Journal of the Mechanics and Physics of Solids 42 (8) (1994) 1223–1245.
J. Chen, G. Chen, H. Yan, B. Su, X. Gong, B. Zhou, Journal of Materials Engineering and Performance 26 (2017) 4748–4759.
D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, D.H. Yang, J.F. Fan, corrosion science 53 (1) (2011) 362–373.
A.D. Südholz, N.T. Kirkland, R.G. Buchheit, N. Birbilis, Electrochemical and Solid-State Letters 14 (2) (2010) C5, doi: 10.1149/1.3523229.
E. Zhang, L. Yang, Materials Science and Engineering: A 497 (1-2) (2008) 111–118.
W.-C. Kim, J.-G. Kim, J.-Y. Lee, H.-K. Seok, Materials Letters 62 (25) (2008) 4146–4148.
M.S. Priyadarshini, O. Romiluyi, Y. Wang, K. Miskin, C. Ganley, P. Clancy, Materials Horizons 11 (3) (2024).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer review under responsibility of Chongqing University