Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Within the past ten years, spark plasma sintering (SPS) has become an increasingly popular process for Mg manufacturing. In the SPS process, interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating. Compared to traditional and additive manufacturing (AM) techniques, SPS gives unique control of the structural and microstructural features of Mg components. By doing so, their mechanical, tribological, and corrosion properties can be tailored. Although great advancements in this field have been made, these pieces of knowledge are scattered and have not been contextualized into a single work. The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg. To do so, the existing body of SPS Mg literature was first surveyed, with a focus on their structural formation and degradation mechanisms. It was found that successful Mg SPS fabrication highly depended on the processing temperature, particle size, and particle crystallinity. The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect. In degradative environments, their performance depends on their structural features and whether they have secondary phased composites. In industrial applications, SPS'd Mg was found to have great potential in biomedical, hydrogen storage, battery, automotive, and recycling sectors. The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components. Despite these findings, the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood. In total, this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.
L. Zhu, N. Li, P.R.N. Childs, Propul. Power Res. 7 (2018) 103–119, doi:10.1016/j.jppr.2018.04.001.
R.R. Boyer, J.D. Cotton, M. Mohaghegh, R.E. Schafrik, MRS Bull. 40 (2015) 1055–1066, doi:10.1557/mrs.2015.278.
A.M. Ralls, K. Leong, J. Clayton, P. Fuelling, C. Mercer, V. Navarro, P.L. Menezes, Materials 16 (2023) 6063, doi:10.3390/ma16176063.
L. Ouyang, F. Liu, H. Wang, J. Liu, X.-S. Yang, L. Sun, M. Zhu, J. Alloys. Compd. 832 (2020) 154865, doi:10.1016/j.jallcom.2020.154865.
J. Song, J. She, D. Chen, F. Pan, J. Magnes. Alloys 8 (2020) 1–41, doi:10.1016/j.jma.2020.02.003.
B.L. Mordike, T. Ebert, Mater. Sci. Eng.: A 302 (2001) 37–45, doi:10.1016/S0921-5093(00)01351-4.
A.M. Ralls, P. Kumar, P.L. Menezes, Processes 9 (2021) 31, doi:10.3390/pr9010031.
R. Karunakaran, S. Ortgies, A. Tamayol, F. Bobaru, M.P. Sealy, Bioact. Mater. 5 (2020) 44–54, doi:10.1016/j.bioactmat.2019.12.004.
Z. Zeng, M. Salehi, A. Kopp, S. Xu, M. Esmaily, N. Birbilis, J. Magnes. Alloys 10 (2022) 1511–1541, doi:10.1016/j.jma.2022.03.001.
M.N. Jahangir, M.A.H. Mamun, M.P. Sealy, AIP. Conf. Proc. 1980 (2018) 030026, doi:10.1063/1.5044305.
K. V, B, N. Kumar, S, S. Kumar, V M, Addit. Manuf. 55 (2022) 102802, doi:10.1016/j.addma.2022.102802.
F. Bär, L. Berger, L. Jauer, G. Kurtuldu, R. Schäublin, J.H. Schleifenbaum, J.F. Löffler, Acta Biomater. 98 (2019) 36–49, doi:10.1016/j.actbio.2019.05.056.
D. Kajánek, F. Pastorek, B. Hadzima, S. Bagherifard, M. Jambor, P. Belány, P. Minárik, Surf. Coat. Technol. 446 (2022) 128773, doi:10.1016/j.surfcoat.2022.128773.
T. Zang, Z. Wang, L. Chen, M. Kong, S. Gao, H.M. Ngwangwa, L. Zhu, W. Yu, H. Zheng, J. Mater. Res. Technol. 25 (2023) 4425–4440, doi:10.1016/j.jmrt.2023.06.227.
Y. Chen, F. Liu, C. He, L. Li, C. Wang, Y. Liu, Q. Wang, J. Magnes. Alloys 10 (2022) 614–626, doi:10.1016/j.jma.2021.07.028.
W. Wang, M. Kattoura, S. Bovid, Z. Zhang, D. Lahrman, W. Cai, Wear. 524–525 (2023) 204866, doi:10.1016/j.wear.2023.204866.
H. Soyama, C. Kuji, Y. Liao, J. Magnes. Alloys 11 (2023) 1592–1607, doi:10.1016/j.jma.2023.04.004.
H. Liu, J. Gu, Z. Tong, D. Yang, H. Yang, X. Ren, Mater. Today Commun. 31 (2022) 103678, doi:10.1016/j.mtcomm.2022.103678.
V. Patel, W. Li, J. Andersson, N. Li, J. Mater. Res. Technol. 17 (2022) 3150–3156, doi:10.1016/j.jmrt.2022.02.059.
Y. Hu, Y. Sun, J. He, D. Fang, J. Zhu, X. Meng, Mater. Res. Express 9 (2022) 016508, doi:10.1088/2053-1591/ac475e.
A. Orozco-Caballero, M. Álvarez-Leal, O.A. Ruano, F. Carreño, Mater. Sci. Eng.: A 856 (2022) 143963, doi:10.1016/j.msea.2022.143963.
O.A. Ruano, M. Álvarez-Leal, A. Orozco-Caballero, F. Carreño, J. Magnes. Alloys 10 (2022) 3156–3166, doi:10.1016/j.jma.2022.02.008.
G.G. Yapici, S.V. Sajadifar, A. Hosseinzadeh, T. Wegener, C. Sobrero, A. Engelhardt, T. Niendorf, Adv. Eng. Mater. 25 (2023) 2201638, doi:10.1002/adem.202201638.
A.K. Basak, A. Pramanik, C. Prakash, S. Shankar, L.R. Gupta, V.A. Smirnov, A.A. Al-Kahtani, J. Mater. Res. Technol. 25 (2023) 6303–6312, doi:10.1016/j.jmrt.2023.07.096.
M. Hilpert, L. Wagner, J. Mater. Eng. Perform. 9 (2000) 402–407, doi:10.1361/105994900770345791.
P. Zhang, J. Lindemann, Scr. Mater. 52 (2005) 485–490, doi:10.1016/j.scriptamat.2004.11.003.
C.I. Chang, C.J. Lee, J.C. Huang, Scr. Mater. 51 (2004) 509–514, doi:10.1016/j.scriptamat.2004.05.043.
C.H. Chuang, J.C. Huang, P.J. Hsieh, Scr. Mater. 53 (2005) 1455–1460, doi:10.1016/j.scriptamat.2005.08.019.
H.Z. Ye, X.Y. Liu, J. Mater. Sci. 39 (2004) 6153–6171, doi:10.1023/B:JMSC.0000043583.47148.31.
E. Carreño-Morelli, J. Yang, E. Couteau, K. Hernadi, J.W. Seo, C. Bonjour, L. Forró, R. Schaller, Physica Status Solidi (201 (2004) R53-R55, doi:10.1002/pssa.200409045.
C.Y.H. Lim, D.K. Leo, J.J.S. Ang, M. Gupta, Wear. 259 (2005) 620–625, doi:10.1016/j.wear.2005.02.006.
S. Dutta, S. Gupta, M. Roy, ACS Biomater. Sci. Eng. 6 (2020) 4748–4773, doi:10.1021/acsbiomaterials.0c00678.
S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, A.F. Ismail, S. Sharif, M. Razzaghi, S. Ramakrishna, F. Berto, Materials 13 (2020) 4421, doi:10.3390/ma13194421.
A. Luo, Metall. Mater. Trans. A 26 (1995) 2445–2455, doi:10.1007/BF02671259.
R. Saranu, R. Chanamala, S. Putti, IOP Conf. Ser.: Mater. Sci. Eng. 961 (2020) 012001, doi:10.1088/1757-899X/961/1/012001.
F. Khorashadizade, S. Abazari, M. Rajabi, H.R. Bakhsheshi-Rad, A.F. Ismail, S. Sharif, S. Ramakrishna, F. Berto, J. Mater. Res. Technol. 15 (2021) 6034–6066, doi:10.1016/j.jmrt.2021.10.141.
Y. Xiong, C. Lu, C. Wang, R. Song, J. Alloys. Compd. 625 (2015) 258–265, doi:10.1016/j.jallcom.2014.11.084.
L. Chen, Y. Yao, Acta Metall. Sin. 27 (2014) 762–774, doi:10.1007/s40195-014-0161-0.
J. Shen, W. Yin, Q. Wei, Y. Li, J. Liu, L. An, J. Mater. Res. 28 (2013) 1835–1852, doi:10.1557/jmr.2013.16.
S.T. Amancio-Filho, C. Bueno, J.F. dos Santos, N. Huber, E. Hage, Mater. Sci. Eng.: A 528 (2011) 3841–3848, doi:10.1016/j.msea.2011.01.085.
R. Bardhan, M. Ruminski, A. Brand, J. Urban, Energy Environ. Sci. 4 (2011) 4882-4895 J. , doi:10.1039/C1EE02258J.
E.M. Masoud, A.-A. El-Bellihi, W.A. Bayoumy, E.A. Mohamed, J. Mol. Liq. 260 (2018) 237–244, doi:10.1016/j.molliq.2018.03.084.
P.A. Kallenberger, F.J. Brieler, K. Posern, M. Fröba, Chemie Ingenieur Technik 88 (2016) 379–384, doi:10.1002/cite.201500095.
B.R. Sunil, G.P.K. Reddy, H. Patle, R. Dumpala, J. Magnes. Alloys 4 (2016) 52–61, doi:10.1016/j.jma.2016.02.001.
M. Balakrishnan, I. Dinaharan, R. Palanivel, R. Sivaprakasam, J. Magnes. Alloys 3 (2015) 76–78, doi:10.1016/j.jma.2014.12.007.
Ratna Sunil, Sampath Kumar, U. Chakkingal, V. Nandakumar, M Doble, Mater. Sci. Eng.: C 39 (2014) 315-324 B.T.S. , doi:10.1016/j.msec.2014.03.004.
M.R. Parray, N.Z. Khan, A. Maqbool, Mater. Today: Proceedings 46 (2021) 6507–6512, doi:10.1016/j.matpr.2021.03.694.
Ratna Sunil, Sampath Kumar, U. Chakkingal, V. Nandakumar, M Doble, J. Mater. Sci.: Mater. Med. 25 (2014) 975-988 B.T.S. , doi:10.1007/s10856-013-5127-7.
I. Dinaharan, S. Zhang, G. Chen, Q. Shi, J. Alloys. Compd. 820 (2020) 153071, doi:10.1016/j.jallcom.2019.153071.
D. Lu, Y. Jiang, R. Zhou, Wear 305 (2013) 286–290, doi:10.1016/j.wear.2012.11.079.
C. Vidal, P. Alves, M.M. Alves, M.J. Carmezim, M.H. Fernandes, L. Grenho, P.L. Inácio, F.B. Ferreira, T.G. Santos, C. Santos, J. Mech. Behav. Biomed. Mater. 129 (2022) 105137, doi:10.1016/j.jmbbm.2022.105137.
A. Abdollahzadeh, B. Bagheri, M. Abbasi, F. Sharifi, A.O.Mechanical Moghaddam, Surf. Topogr.: Metrol. Prop. 9 (2021) 035038, doi:10.1088/2051-672X/ac2176.
B. Bagheri, M. Abbasi, A. Abdollahzadeh, S.E. Mirsalehi, Trans. Nonferrous Metals Soc. China 30 (2020) 905–916, doi:10.1016/S1003-6326(20)65264-5.
B. Bagheri, A. Abdollahzadeh, M. Abbasi, A.H. Kokabi, Int. J. Mater. Form. 14 (2021) 623–640, doi:10.1007/s12289-020-01551-2.
B. Bagheri, M. Abbasi, A. Abdollahzadeh, A.H. Kokabi, Int. J. Miner. Metall. Mater. 27 (2020) 1133–1146, doi:10.1007/s12613-020-1993-4.
T. Xin, Y. Zhao, R. Mahjoub, J. Jiang, A. Yadav, K. Nomoto, R. Niu, S. Tang, F. Ji, Z. Quadir, et al., Sci. Adv. 7 (2021) eabf3039, doi:10.1126/sciadv.abf3039.
T. Xin, S. Tang, F. Ji, L. Cui, B. He, X. Lin, X. Tian, H. Hou, Y. Zhao, M. Ferry, Acta Mater. 239 (2022) 118248, doi:10.1016/j.actamat.2022.118248.
M. Daroonparvar, A. Helmer, A.M. Ralls, A.K. Kasar, M.U. Farooq Khan, P.L. Menezes, M. Misra, S. Shao, R.K. Gupta, Corros. Sci. 223 (2023) 111454, doi:10.1016/j.corsci.2023.111454.
M. Daroonparvar, A. Helmer, A.M. Ralls, M.U. Farooq Khan, A.K. Kasar, R.K. Gupta, M. Misra, S. Shao, P.L. Menezes, N. Shamsaei, J. Magnes. Alloys (2023), doi:10.1016/j.jma.2023.09.008.
M. Daroonparvar, A. Helmer, A.M. Ralls, M.U. Farooq Khan, A.K. Kasar, P.L. Menezes, M. Misra, R.K. Gupta, Mater. Lett. 346 (2023) 134473, doi:10.1016/j.matlet.2023.134473.
M. Daroonparvar, H.R. Bakhsheshi-Rad, A. Saberi, M. Razzaghi, A.K. Kasar, S. Ramakrishna, P.L. Menezes, M. Misra, A.F. Ismail, S. Sharif, et al., J. Magnes. Alloys 10 (2022) 2025–2061, doi:10.1016/j.jma.2022.07.012.
Gh. Barati Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade, J. Magnes. Alloys 5 (2017) 74–132, doi:10.1016/j.jma.2017.02.004.
G.-H. Lv, H. Chen, L. Li, E.-W. Niu, H. Pang, B. Zou, S.-Z. Yang, Curr. Appl. Phys. 9 (2009) 126–130, doi:10.1016/j.cap.2007.12.007.
P. Bala Srinivasan, J. Liang, C. Blawert, M. Störmer, W. Dietzel, Appl. Surf. Sci. 255 (2009) 4212–4218, doi:10.1016/j.apsusc.2008.11.008.
A. Kossenko, M. Zinigrad, Mater. Des. 88 (2015) 302–309, doi:10.1016/j.matdes.2015.08.071.
N.J. Grant, Metall. Mater. Trans. A 23 (1992) 1083–1093, doi:10.1007/BF02665040.
S. Jayasathyakawin, M. Ravichandran, N. Baskar, C. Anand Chairman, R. Balasundaram, Mater. Today: Proceedings 27 (2020) 736–741, doi:10.1016/j.matpr.2019.12.003.
D.B. Kumar, B.S. babu, K.M.A. Jerrin, N. Joseph, A. Jiss, IOP Conf. Ser.: Mater. Sci. Eng. 993 (2020) 012004, doi:10.1088/1757-899X/993/1/012004.
Z.A. Munir, D.V. Quach, M. Ohyanagi, J. Am. Ceram. Soc. 94 (2011) 1–19, doi:10.1111/j.1551-2916.2010.04210.x.
D. Paraskevas, K. Vanmeensel, J. Vleugels, W. Dewulf, Y. Deng, J.R. Duflou, Materials 7 (2014) 5664–5687, doi:10.3390/ma7085664.
O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann, Adv. Eng. Mater. 16 (2014) 830–849, doi:10.1002/adem.201300409.
S. Li, X. Yang, J. Hou, W. Du, J. Magnes. Alloys 8 (2020) 78–90, doi:10.1016/j.jma.2019.08.002.
U.C. Oliver, A.V. Sunday, E.I.-E.I. Christain, M.M. Elizabeth, Int. J. Adv. Manuf. Technol. 112 (2021) 1819–1839, doi:10.1007/s00170-020-06480-7.
M. Abedi, A. Asadi, S. Vorotilo, A.S. A Mukasyan, J. Mater. Sci. 56 (2021) 19739–19766, doi:10.1007/s10853-021-06556-z.
I. Nakahata, Y. Tsutsumi, E. Kobayashi, Metals 10 (2020) 1314, doi:10.3390/met10101314.
M. Březina, M. Hasoňová, S. Fintová, P. Doležal, A. Rednyk, J. Wasserbauer, Mater. Today Commun. 28 (2021) 102569, doi:10.1016/j.mtcomm.2021.102569.
M. Somasundaram, N.K. Uttamchand, A.R. Annamalai, C.-P. Jen, Nanomaterials 12 (2022) 2178, doi:10.3390/nano12132178.
M. Oghbaei, O. Mirzaee, J. Alloys. Compd. 494 (2010) 175–189, doi:10.1016/j.jallcom.2010.01.068.
W.N.A.W. Muhammad, Z. Sajuri, Y. Mutoh, Y. Miyashita, J. Alloys. Compd. 509 (2011) 6021–6029, doi:10.1016/j.jallcom.2011.02.153.
G. Delaizir, G. Bernard-Granger, J. Monnier, R. Grodzki, O. Kim-Hak, P.-D. Szkutnik, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, et al., Mater. Res. Bull. 47 (2012) 1954–1960, doi:10.1016/j.materresbull.2012.04.019.
G. Manohar, K.M. Pandey, S.R. Maity, Ceram. Int. 47 (2021) 32610–32618, doi:10.1016/j.ceramint.2021.08.156.
E. Ghasali, M. Alizadeh, M. Niazmand, T. Ebadzadeh, J. Alloys. Compd. 697 (2017) 200–207, doi:10.1016/j.jallcom.2016.12.146.
W.L.E. Wong, M. Gupta, Technologies 3 (2015) 1–18, doi:10.3390/technologies3010001.
Z.-Y. Hu, Z.-H. Zhang, X.-W. Cheng, F.-C. Wang, Y.-F. Zhang, S.-L. Li, Mater. Des. 191 (2020) 108662, doi:10.1016/j.matdes.2020.108662.
S.O. Jeje, M.B. Shongwe, A.L. Rominiyi, P.A. Olubambi, Int. J. Adv. Manuf. Technol. 117 (2021) 2529–2544, doi:10.1007/s00170-021-07840-7.
S.D. Oguntuyi, O.T. Johnson, M.B. Shongwe, Int. J. Adv. Manuf. Technol. 116 (2021) 69–82, doi:10.1007/s00170-021-07471-y.
S.D. Oguntuyi, O.T. Johnson, M.B. Shongwe, Met. Mater. Int. 27 (2021) 2146–2159, doi:10.1007/s12540-020-00874-8.
O.F. Ogunbiyi, T. Jamiru, E.R. Sadiku, O.T. Adesina, L. Beneke, T.A. Adegbola, Procedia Manuf. 35 (2019) 1324–1329, doi:10.1016/j.promfg.2019.05.022.
D. Annur, I. Kartika, S. Supriadi, B. Suharno, Mater. Res. Express 8 (2021) 012001, doi:10.1088/2053-1591/abd969.
M. Abedi, S. Sovizi, A. Azarniya, D. Giuntini, M.E. Seraji, H.R.M. Hosseini, C. Amutha, S. Ramakrishna, A. Mukasyan, Crit. Rev. Solid State Mater. Sci. 48 (2023) 169–214, doi:10.1080/10408436.2022.2049441.
Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 41 (2006) 763–777, doi:10.1007/s10853-006-6555-2.
N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner, J. Nanomater. 2012 (2012) e983470, doi:10.1155/2012/983470.
M. Tokita, Ceramics 4 (2021) 160–198, doi:10.3390/ceramics4020014.
Z.-H. Zhang, Z.-F. Liu, J.-F. Lu, X.-B. Shen, F.-C. Wang, Y.-D. Wang, Scr. Mater. 81 (2014) 56–59, doi:10.1016/j.scriptamat.2014.03.011.
D.V. Dudina, B.B. Bokhonov, E.A. Olevsky, Materials 12 (2019) 541, doi:10.3390/ma12030541.
M. Mondet, E. Barraud, S. Lemonnier, J. Guyon, N. Allain, T. Grosdidier, Acta Mater. 119 (2016) 55–67, doi:10.1016/j.actamat.2016.08.006.
M. Knapek, M. Zemková, A. Greš, E. Jablonská, F. Lukáč, R. Král, J. Bohlen, P. Minárik, J. Magnes. Alloys 9 (2021) 853–865, doi:10.1016/j.jma.2020.12.017.
D. Guan, W.M. Rainforth, J. Sharp, J. Gao, I. Todd, J. Alloys. Compd. 688 (2016) 1141–1150, doi:10.1016/j.jallcom.2016.07.162.
J. Trapp, B. Kieback, Powder Metall. 62 (2019) 297–306, doi:10.1080/00325899.2019.1653532.
L. Shamshina, S. Stein, N Abidi, Green Chem. 23 (2021) 9646-9657 J.R. , doi:10.1039/D1GC03128G.
P. Lv, M.N. Guzik, S. Sartori, J. Huot, J. Mater. Res. Technol. 8 (2019) 1828–1834, doi:10.1016/j.jmrt.2018.12.013.
P. Minárik, M. Zemková, M. Knapek, S. Šašek, J. Dittrich, F. Lukáč, J. Kozlík, R. Král, Materials 13 (2020) 3973, doi:10.3390/ma13183973.
T.M. Cook, T.H. Courtney, Metall. Mater. Trans. A 26 (1995) 2389–2397, doi:10.1007/BF02671252.
N. Wang, Y. Huang, J. Liu, X. Yang, W. Xie, Q. Cai, S. Zheng, Z. Shi, Electrochim. Acta 378 (2021) 138135, doi:10.1016/j.electacta.2021.138135.
P. Minárik, J. Stráský, J. Veselý, F. Lukáč, B. Hadzima, R. Král, J. Alloys. Compd. 742 (2018) 172–179, doi:10.1016/j.jallcom.2018.01.115.
Y. Cheng, Z. Cui, L. Cheng, D. Gong, W. Wang, Adv. Powder Technol. 28 (2017) 1129–1135, doi:10.1016/j.apt.2017.01.017.
D. Paraskevas, S. Dadbakhsh, J. Vleugels, K. Vanmeensel, W. Dewulf, J.R. Duflou, Mater. Des. 109 (2016) 520–529, doi:10.1016/j.matdes.2016.07.082.
K. Hirota, N. Okabayashi, K. Toyoda, O. Yamaguchi, Mater. Res. Bull. 27 (1992) 319–326, doi:10.1016/0025-5408(92)90061-4.
F. Czerwinski, Int. Mater. Rev. 60 (2015) 264–296, doi:10.1179/1743280415Y.0000000001.
F. Czerwinski, JOM 64 (2012) 1477–1483, doi:10.1007/s11837-012-0477-z.
D.V. Dudina, B.B. Bokhonov, Adv. Powder Technol. 28 (2017) 641–647, doi:10.1016/j.apt.2016.12.001.
J. Soderlind, M. Cihova, R. Schäublin, S. Risbud, J.F. Löffler, Acta Biomater. 98 (2019) 67–80, doi:10.1016/j.actbio.2019.06.045.
G. Straffelini, A.P. Nogueira, P. Muterlle, C. Menapace, Mater. Sci. Technol. 27 (2011) 1582–1587, doi:10.1179/1743284710Y.0000000007.
R. Liu, W. Wang, H. Chen, Z. Lu, W. Zhao, T. Zhang, Adv. Powder Technol. 30 (2019) 2649–2658, doi:10.1016/j.apt.2019.08.012.
P. Minárik, M. Zemková, F. Lukáč, J. Bohlen, M. Knapek, R. Král, J. Alloys. Compd. 819 (2020) 153008, doi:10.1016/j.jallcom.2019.153008.
S. Diouf, A. Molinari, Powder. Technol. 221 (2012) 220–227, doi:10.1016/j.powtec.2012.01.005.
R. Bjørk, V. Tikare, H.L. Frandsen, N. Pryds, J. Am. Ceram. Soc. 96 (2013) 103–110, doi:10.1111/jace.12100.
J.S.C. Francis, M. Cologna, R. Raj, J. Eur. Ceram. Soc. 32 (2012) 3129–3136, doi:10.1016/j.jeurceramsoc.2012.04.028.
B. Li, B. Teng, Z. Zhu, J. Magnes. Alloys 8 (2020) 1154–1165, doi:10.1016/j.jma.2019.09.014.
D. Paraskevas, K. Vanmeensel, J. Vleugels, W. Dewulf, J.R. Duflou, Key. Eng. Mater. 639 (2015) 493–498, doi:10.4028/www.scientific.net/KEM.639.493.
P. Hendrickx, M.M. Tünçay, M. Brochu, Canadian Metall. Q. 55 (2016) 94–103, doi:10.1080/00084433.2015.1125094.
V. Kučera, F. Prusa, D. Al-Fe Vojtěch, Solid State Phenomena 270 (2017) 197–204, doi:10.4028/www.scientific.net/SSP.270.197.
H. Hao, Q. Qiao, Z. Liu, F. Zhao, Resour., Conserv. Recycl. 122 (2017) 114–125, doi:10.1016/j.resconrec.2017.02.005.
B. Wan, W. Chen, T. Lu, F. Liu, Z. Jiang, M. Mao, Resour., Conserv. Recycl. 125 (2017) 37–47, doi:10.1016/j.resconrec.2017.06.004.
D.B. Witkin, E.J. Lavernia, Prog. Mater. Sci. 51 (2006) 1–60, doi:10.1016/j.pmatsci.2005.04.004.
X. Zhang, H. Wang, J. Narayan, C.C. Koch, Acta Mater. 49 (2001) 1319–1326, doi:10.1016/S1359-6454(01)00051-9.
N.K. Katiyar, K. Biswas, C.S. Tiwary, Int. Mater. Rev. 66 (2021) 493–532, doi:10.1080/09506608.2020.1825175.
M. Pozuelo, C. Melnyk, W.H. Kao, J.-M. Yang, J. Mater. Res. 26 (2011) 904–911, doi:10.1557/jmr.2010.94.
M.U.F. Khan, A. Patil, J. Christudasjustus, T. Borkar, R.K. Gupta, J. Magnes. Alloys 8 (2020) 319–328, doi:10.1016/j.jma.2020.02.006.
T.W. Wong, A. Hadadzadeh, M.J. Benoit, M.A. Wells, J. Mater. Process. Technol. 254 (2018) 238–247, doi:10.1016/j.jmatprotec.2017.11.039.
J. Liao, M. Hotta, N. Yamamoto, Corros. Sci. 61 (2012) 208–214, doi:10.1016/j.corsci.2012.04.039.
A. Ünal, Mater. Manuf. Process. 7 (1992) 441–461, doi:10.1080/10426919208947431.
Y. Zhu, J. Qin, J. Wang, P. Jin, P. Li, Mater. Today Commun. 35 (2023) 105670, doi:10.1016/j.mtcomm.2023.105670.
C. Singhal, Q. Murtaza, Mater. Today: Proceedings 5 (2018) 24287–24298, doi:10.1016/j.matpr.2018.10.224.
P.R. Matli, R.A. Shakoor, A.M. Amer Mohamed, M. Gupta, Metals 6 (2016) 143, doi:10.3390/met6070143.
D.V. Dudina, K. Georgarakis, E.A. Olevsky, Int. Mater. Rev. 68 (2023) 225–246, doi:10.1080/09506608.2022.2077029.
K. Narita, E. Kobayashi, T. Sato, Mater. Trans. 57 (2016) 1620–1627, doi:10.2320/matertrans.L-M2016827.
A.D. Akinwekomi, W.-C. Law, C.-Y. Tang, L. Chen, C.-P. Tsui, Compos. Part B: Engineering 93 (2016) 302–309, doi:10.1016/j.compositesb.2016.03.041.
Z.R. Yang, S.Q. Wang, M.J. Gao, Y.T. Zhao, K.M. Chen, X.H. Cui, Compos. Part A: Appl. Sci. Manuf. 39 (2008) 1427–1432, doi:10.1016/j.compositesa.2008.05.002.
H. Pan, F. Pan, R. Yang, J. Peng, A. Tang, Q. Huang, K. Song, Z.Thermal Gao, Mater. Sci. Technol. 30 (2014) 988–994, doi:10.1179/1743284713Y.0000000401.
B. Hrapkowicz, S. Lesz, M. Karolus, D. Garbiec, J. Wiśniewski, R. Rubach, K. Gołombek, M. Kremzer, J. Popis, Metals 12 (2022) 375, doi:10.3390/met12030375.
N. Hansen, Scr. Mater. 51 (2004) 801–806, doi:10.1016/j.scriptamat.2004.06.002.
L.C. Rongchang ZENG, Acta Metall. Sin. 54 (2018) 1215–1235, doi:10.11900/0412.1961.2018.00032.
T. Zhang, W. Wang, J. Liu, L. Wang, Y. Tang, K. Wang, Front. Bioeng. Biotechnol. (2022) 10.
P. Maier, N. Hort, Metals 10 (2020) 1328, doi:10.3390/met10101328.
V.V. Ramalingam, P. Ramasamy, M.D. Kovukkal, G. Myilsamy, Met. Mater. Int. 26 (2020) 409–430, doi:10.1007/s12540-019-00346-8.
Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda, Mater. Sci. Eng.: A 354 (2003) 298–305, doi:10.1016/S0921-5093(03)00008-X.
A.M. Ralls, M. Daroonparvar, S. Sikdar, M.H. Rahman, M. Monwar, K. Watson, C.M. Kay, P.L. Menezes, Tribol. Int. 169 (2022) 107471, doi:10.1016/j.triboint.2022.107471.
K.-S. Chou, K.-C. Huang, H.-H. Lee, Nanotechnology. 16 (2005) 779, doi:10.1088/0957-4484/16/6/027.
A. Das, S.P. Harimkar, J. Mater. Sci. Technol. 30 (2014) 1059–1070, doi:10.1016/j.jmst.2014.08.002.
O.N. Olalekan, M. Abdul Samad, S.F. Hassan, M.M.I. Elhady, Tribol.- Mater., Surf. Interfaces 16 (2022) 110–118, doi:10.1080/17515831.2021.1898898.
J. Umeda, K. Kondoh, H. Imai, Mater. Sci. Eng.: A 504 (2009) 157–162, doi:10.1016/j.msea.2008.10.054.
H. Dieringa, J. Mater. Sci. 46 (2011) 289–306, doi:10.1007/s10853-010-5010-6.
D. Berman, A. Erdemir, A.V. Sumant, Mater. Today 17 (2014) 31–42, doi:10.1016/j.mattod.2013.12.003.
S.F. Hassan, O.O. Nasirudeen, N. Al-Aqeeli, N. Saheb, F. Patel, M.M.A. Baig, J. Alloys. Compd. 646 (2015) 333–338, doi:10.1016/j.jallcom.2015.06.099.
A.M. Ralls, M. Daroonparvar, A.K. Kasar, M. Misra, P.L. Menezes, Tribol. Int. (2022) 108033, doi:10.1016/j.triboint.2022.108033.
D. Kumar, J. Jain, N.N. Gosvami, Tribol. Lett. 70 (2022) 27, doi:10.1007/s11249-022-01568-5.
Z. Shao, M. Nishimoto, I. Muto, Y. Sugawara, J. Magnes. Alloys 11 (2023) 137–153, doi:10.1016/j.jma.2022.10.020.
A. Dobkowska, Ł. Żrodowski, M. Chlewicka, M. Koralnik, B. Adamczyk-Cieślak, J. Ciftci, B. Morończyk, M. Kruszewski, J. Jaroszewicz, D. Kuc, et al., J. Magnes. Alloys 10 (2022) 3553–3564, doi:10.1016/j.jma.2022.06.003.
N.Q. Cao, D.N. Pham, N. Kai, H.V. Dinh, S. Hiromoto, E. In Kobayashi, Metals 7 (2017) 358, doi:10.3390/met7090358.
Z. Cui, Y. Zhang, Y. Cheng, D. Gong, W. Microstructure Wang, Mater. Sci. Eng.: C 99 (2019) 1035–1047, doi:10.1016/j.msec.2019.02.050.
K.R. Kim, J.W. Ahn, G.-H. Kim, J.H. Han, K.K. Cho, J.-S. Roh, W.J. Kim, H.S. Kim, Met. Mater. Int. 20 (2014) 1095–1101, doi:10.1007/s12540-014-6023-5.
S. Mathieu, C. Rapin, J. Steinmetz, P. Steinmetz, Corros. Sci. 45 (2003) 2741–2755, doi:10.1016/S0010-938X(03)00109-4.
M.-C. Zhao, M. Liu, G. Song, A. Atrens, Corros. Sci. 50 (2008) 1939–1953, doi:10.1016/j.corsci.2008.04.010.
T. Zhang, Y. Li, F. Wang, Corros. Sci. 48 (2006) 1249–1264, doi:10.1016/j.corsci.2005.05.011.
M.C. Zhao, P.J. Uggowitzer, M. Liu, P. Schmutz, G. Song, A. Atrens, Mater. Sci. Forum 618–619 (2009) 473–478, doi:10.4028/www.scientific.net/MSF.618-619.473.
M.-H. Grosjean, M. Zidoune, L. Roué, J. Huot, R. Schulz, Electrochim. Acta 49 (2004) 2461–2470, doi:10.1016/j.electacta.2004.02.001.
R. Zeng, J. Zhang, W. Huang, W. Dietzel, K.U. Kainer, C. Blawert, W. Ke, Trans. Nonferrous Metals Soc. China 16 (2006) s763-s771, doi:10.1016/S1003-6326(06)60297-5.
M. Knapek, P. Minárik, J. Čapek, R. Král, J. Kubásek, F. Chmelík, Corros. Sci. 145 (2018) 10–15, doi:10.1016/j.corsci.2018.09.006.
M. Liu, P. Schmutz, P.J. Uggowitzer, G. Song, A. Atrens, Corros. Sci. 52 (2010) 3687–3701, doi:10.1016/j.corsci.2010.07.019.
J. Deng, J. Ye, Y. Zhao, Y. Zhu, T. Wu, C. Zhang, L. Dong, H. Ouyang, X. Cheng, X. Wang, ACS Biomater. Sci. Eng. 5 (2019) 4285–4292, doi:10.1021/acsbiomaterials.9b00650.
J. Fu, Y. Su, Y.-X. Qin, Y. Zheng, Y. Wang, D. Zhu, Biomaterials 230 (2020) 119641, doi:10.1016/j.biomaterials.2019.119641.
M.U. Farooq Khan, T. Larimian, T. Borkar, R.K. Gupta, Corrosion 77 (2020) 228–241, doi:10.5006/3633.
A. Ralls, P. Kumar, M. Misra, P.L. Menezes, JOM 72 (2020) 684–696, doi:10.1007/s11837-019-03687-2.
G. Manivasagam, S. Suwas, Mater. Sci. Technol. 30 (2014) 515–520, doi:10.1179/1743284713Y.0000000500.
M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27 (2006) 1728–1734, doi:10.1016/j.biomaterials.2005.10.003.
T.B. Matias, G.H. Asato, B.T. Ramasco, W.J. Botta, C.S. Kiminami, C. Bolfarini, J. Mater. Res. Technol. 3 (2014) 203–209, doi:10.1016/j.jmrt.2014.03.007.
M. Revilla-León, M. Sadeghpour, M. Özcan, J. Prosthodont. 29 (2020) 579–593, doi:10.1111/jopr.13212.
M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A.R. Boccaccini, L. Tayebi, Mater. Sci. Eng.: C 71 (2017) 1253–1266, doi:10.1016/j.msec.2016.11.027.
R. Imran, A. Al Rashid, M. Koç, Bioprinting 28 (2022) e00236, doi:10.1016/j.bprint.2022.e00236.
R. Nicula, F. Lüthen, M. Stir, B. Nebe, E. Burkel, Biomol. Eng. 24 (2007) 564–567, doi:10.1016/j.bioeng.2007.08.008.
M. Jehan, D. Fruchart, J. Alloys. Compd. 580 (2013) S343-S348, doi:10.1016/j.jallcom.2013.03.266.
K.-F. Aguey-Zinsou, J.-R. Ares-Fernández, Energy Environ. Sci. 3 (2010) 526–543, doi:10.1039/B921645F.
J. Liu, X. Song, P. Pei, G. Chen, Int. J. Hydrogen. Energy 34 (2009) 4365–4370, doi:10.1016/j.ijhydene.2008.11.113.
J. Liu, X.P. Song, P. Pei, G.L. Chen, J. Alloys. Compd. 486 (2009) 338–342, doi:10.1016/j.jallcom.2009.06.144.
M. Nygren, Z. Shen, Key. Eng. Mater. 264–268 (2004) 719–724, doi:10.4028/www.scientific.net/KEM.264-268.719.
X. Dong, F. Lü, L. Yang, Y. Zhang, X. Influence of Wang, Mater. Chem. Phys. 112 (2008) 596–602, doi:10.1016/j.matchemphys.2008.05.091.
R. Shah, V. Mittal, E. Matsil, A. Rosenkranz, Adv. Mech. Eng. 13 (2021) 16878140211003398, doi:10.1177/16878140211003398.
Q. Guo, W. Zeng, S.-L. Liu, Y.-Q. Li, J.-Y. Xu, J.-X. Wang, Y. Wang, Rare Met. 40 (2021) 290–308, doi:10.1007/s12598-020-01493-3.
F. Liu, T. Wang, X. Liu, L.-Z. Fan, Adv. Energy Mater. 11 (2021) 2000787, doi:10.1002/aenm.202000787.
T.B. Abbott, Corrosion 71 (2014) 120–127, doi:10.5006/1474.
N. Wang, W. Li, Y. Huang, G. Wu, M. Hu, G. Li, Z. Shi, J. Power. Sources 436 (2019) 226855, doi:10.1016/j.jpowsour.2019.226855.
X. Liu, J. Xue, P. Zhang, Z. Wang, J. Power. Sources. 414 (2019) 174–182, doi:10.1016/j.jpowsour.2018.12.092.
J. Li, Q. Jiang, H. Sun, Y. Li, Corros. Sci. 111 (2016) 288–301, doi:10.1016/j.corsci.2016.05.019.
W. Zhang, Q. Liu, Y. Chen, G. Wan, Mater. Lett. 232 (2018) 54–57, doi:10.1016/j.matlet.2018.08.069.
Q. Cui, D. Yi, H. Wang, J. Zhang, J. Xu, B. Wang, J. Rare Earths 37 (2019) 1341–1350, doi:10.1016/j.jre.2018.11.012.
X. Liu, S. Liu, J. Xue, J. Power. Sources. 396 (2018) 667–674, doi:10.1016/j.jpowsour.2018.06.085.
H. Zhu, J. Liu, J. Power. Sources. 391 (2018) 10–25, doi:10.1016/j.jpowsour.2018.04.054.
C. Manière, E. Torresani, E.A. Olevsky, Materials 12 (2019) 557, doi:10.3390/ma12040557.
G. Moraga, S. Huysveld, F. Mathieux, G.A. Blengini, L. Alaerts, K. Van Acker, S. de Meester, J. Dewulf, Resour., Conserv. Recycl. 146 (2019) 452–461, doi:10.1016/j.resconrec.2019.03.045.
M. Lieder, A. Rashid, J. Clean. Prod. 115 (2016) 36–51, doi:10.1016/j.jclepro.2015.12.042.
M. Vukšić, I. Žmak, L. Ćurković, A. Kocjan, Open Ceram. 5 (2021) 100076, doi:10.1016/j.oceram.2021.100076.
C. Manière, E. Nigito, L. Durand, A. Weibel, Y. Beynet, C. Estournès, Powder. Technol. 320 (2017) 340–345, doi:10.1016/j.powtec.2017.07.048.
T.-K. Hoang, L. Quéval, C. Berriaud, L. Vido, IEEE Trans. Appl. Superconduct. 28 (2018) 1–5, doi:10.1109/TASC.2018.2810309.
Y. Le Godec, S. Le Floch, Materials 16 (2023) 997, doi:10.3390/ma16030997.
Z. Shen, M. Johnsson, Z. Zhao, M. Nygren, J. Am. Ceram. Soc. 85 (2002) 1921–1927, doi:10.1111/j.1151-2916.2002.tb00381.x.
G. Xie, O. Ohashi, T. Sato, N. Yamaguchi, M. Song, K. Mitsuishi, K. Furuya, Mater. Trans. 45 (2004) 904–909, doi:10.2320/matertrans.45.904.
G. Xie, O. Ohashi, N. Yamaguchi, M. Song, K. Furuya, T. Noda, JSME Mater. Process. Conf. (M & P) 10 (2) (2002) 555–560, doi:10.1299/jsmeintmp.10.2.555.
A.K. Kushwaha, M. Misra, P.L. Menezes, J. Mater. Eng. Perform. (2023), doi:10.1007/s11665-023-09030-w.
A.K. Kushwaha, M. Misra, P.L. Menezes, Nanomaterials 12 (2022) 3618, doi:10.3390/nano12203618.
A.K. Kushwaha, M. John, M. Misra, P.L. Menezes, Crystals 11 (2021) 1317, doi:10.3390/cryst11111317.
T.R. Malow, C.C. Koch, Mater. Sci. Forum 225–227 (1996) 595–604, doi:10.4028/www.scientific.net/MSF.225-227.595.
X. Gu, Y. Zheng, S. Zhong, T. Xi, J. Wang, W. Wang, Biomaterials 31 (2010) 1093–1103, doi:10.1016/j.biomaterials.2009.11.015.
Z. Cai, J. Chen, G. Xie, Intermetallics 148 (2022) 107633, doi:10.1016/j.intermet.2022.107633.
F.O. Méar, G. Xie, D.V. Louzguine-Luzgin, A. Inoue, Mater. Trans. 50 (2009) 588–591, doi:10.2320/matertrans.MRA2008177.
K. Li, B. Li, P. Du, T. Xiang, X. Yang, G. Xie, J. Alloys. Compd. 897 (2022) 163219, doi:10.1016/j.jallcom.2021.163219.
C. Wang, Y. Shuai, Y. Yang, D. Zeng, X. Liang, S. Peng, C. Shuai, J. Alloys. Compd. 897 (2022) 163247, doi:10.1016/j.jallcom.2021.163247.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer review under responsibility of Chongqing University