AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (52.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Spark Plasma Sintering of Mg-based Alloys: Microstructure, Mechanical Properties, Corrosion Behavior, and Tribological Performance

Alessandro M. RallsMohammadreza DaroonparvarPradeep L. Menezes( )
Department of Mechanical Engineering, University of Nevada Reno, Reno, NV, 89557, United States
Show Author Information

Abstract

Within the past ten years, spark plasma sintering (SPS) has become an increasingly popular process for Mg manufacturing. In the SPS process, interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating. Compared to traditional and additive manufacturing (AM) techniques, SPS gives unique control of the structural and microstructural features of Mg components. By doing so, their mechanical, tribological, and corrosion properties can be tailored. Although great advancements in this field have been made, these pieces of knowledge are scattered and have not been contextualized into a single work. The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg. To do so, the existing body of SPS Mg literature was first surveyed, with a focus on their structural formation and degradation mechanisms. It was found that successful Mg SPS fabrication highly depended on the processing temperature, particle size, and particle crystallinity. The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect. In degradative environments, their performance depends on their structural features and whether they have secondary phased composites. In industrial applications, SPS'd Mg was found to have great potential in biomedical, hydrogen storage, battery, automotive, and recycling sectors. The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components. Despite these findings, the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood. In total, this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.

References

[1]

L. Zhu, N. Li, P.R.N. Childs, Propul. Power Res. 7 (2018) 103–119, doi:10.1016/j.jppr.2018.04.001.

[2]

R.R. Boyer, J.D. Cotton, M. Mohaghegh, R.E. Schafrik, MRS Bull. 40 (2015) 1055–1066, doi:10.1557/mrs.2015.278.

[3]
F.C. Campbell, Lightweight Materials: Understanding the Basics, ASM International, 2012 ISBN 978-1-61503-990-6.
[4]

A.M. Ralls, K. Leong, J. Clayton, P. Fuelling, C. Mercer, V. Navarro, P.L. Menezes, Materials 16 (2023) 6063, doi:10.3390/ma16176063.

[5]

L. Ouyang, F. Liu, H. Wang, J. Liu, X.-S. Yang, L. Sun, M. Zhu, J. Alloys. Compd. 832 (2020) 154865, doi:10.1016/j.jallcom.2020.154865.

[6]

J. Song, J. She, D. Chen, F. Pan, J. Magnes. Alloys 8 (2020) 1–41, doi:10.1016/j.jma.2020.02.003.

[7]
I.J. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, Elsevier/Butterworth-Heinemann, 2006 ISBN 978-0-7506-6371-7.
[8]

B.L. Mordike, T. Ebert, Mater. Sci. Eng.: A 302 (2001) 37–45, doi:10.1016/S0921-5093(00)01351-4.

[9]

A.M. Ralls, P. Kumar, P.L. Menezes, Processes 9 (2021) 31, doi:10.3390/pr9010031.

[10]

R. Karunakaran, S. Ortgies, A. Tamayol, F. Bobaru, M.P. Sealy, Bioact. Mater. 5 (2020) 44–54, doi:10.1016/j.bioactmat.2019.12.004.

[11]

Z. Zeng, M. Salehi, A. Kopp, S. Xu, M. Esmaily, N. Birbilis, J. Magnes. Alloys 10 (2022) 1511–1541, doi:10.1016/j.jma.2022.03.001.

[12]

M.N. Jahangir, M.A.H. Mamun, M.P. Sealy, AIP. Conf. Proc. 1980 (2018) 030026, doi:10.1063/1.5044305.

[13]

K. V, B, N. Kumar, S, S. Kumar, V M, Addit. Manuf. 55 (2022) 102802, doi:10.1016/j.addma.2022.102802.

[14]

F. Bär, L. Berger, L. Jauer, G. Kurtuldu, R. Schäublin, J.H. Schleifenbaum, J.F. Löffler, Acta Biomater. 98 (2019) 36–49, doi:10.1016/j.actbio.2019.05.056.

[15]

D. Kajánek, F. Pastorek, B. Hadzima, S. Bagherifard, M. Jambor, P. Belány, P. Minárik, Surf. Coat. Technol. 446 (2022) 128773, doi:10.1016/j.surfcoat.2022.128773.

[16]

T. Zang, Z. Wang, L. Chen, M. Kong, S. Gao, H.M. Ngwangwa, L. Zhu, W. Yu, H. Zheng, J. Mater. Res. Technol. 25 (2023) 4425–4440, doi:10.1016/j.jmrt.2023.06.227.

[17]

Y. Chen, F. Liu, C. He, L. Li, C. Wang, Y. Liu, Q. Wang, J. Magnes. Alloys 10 (2022) 614–626, doi:10.1016/j.jma.2021.07.028.

[18]

W. Wang, M. Kattoura, S. Bovid, Z. Zhang, D. Lahrman, W. Cai, Wear. 524–525 (2023) 204866, doi:10.1016/j.wear.2023.204866.

[19]

H. Soyama, C. Kuji, Y. Liao, J. Magnes. Alloys 11 (2023) 1592–1607, doi:10.1016/j.jma.2023.04.004.

[20]

H. Liu, J. Gu, Z. Tong, D. Yang, H. Yang, X. Ren, Mater. Today Commun. 31 (2022) 103678, doi:10.1016/j.mtcomm.2022.103678.

[21]

V. Patel, W. Li, J. Andersson, N. Li, J. Mater. Res. Technol. 17 (2022) 3150–3156, doi:10.1016/j.jmrt.2022.02.059.

[22]

Y. Hu, Y. Sun, J. He, D. Fang, J. Zhu, X. Meng, Mater. Res. Express 9 (2022) 016508, doi:10.1088/2053-1591/ac475e.

[23]

A. Orozco-Caballero, M. Álvarez-Leal, O.A. Ruano, F. Carreño, Mater. Sci. Eng.: A 856 (2022) 143963, doi:10.1016/j.msea.2022.143963.

[24]

O.A. Ruano, M. Álvarez-Leal, A. Orozco-Caballero, F. Carreño, J. Magnes. Alloys 10 (2022) 3156–3166, doi:10.1016/j.jma.2022.02.008.

[25]

G.G. Yapici, S.V. Sajadifar, A. Hosseinzadeh, T. Wegener, C. Sobrero, A. Engelhardt, T. Niendorf, Adv. Eng. Mater. 25 (2023) 2201638, doi:10.1002/adem.202201638.

[26]

A.K. Basak, A. Pramanik, C. Prakash, S. Shankar, L.R. Gupta, V.A. Smirnov, A.A. Al-Kahtani, J. Mater. Res. Technol. 25 (2023) 6303–6312, doi:10.1016/j.jmrt.2023.07.096.

[27]
Influence of shot peening on fatigue performance of high-strength aluminum- and magnesium alloys.
[28]

M. Hilpert, L. Wagner, J. Mater. Eng. Perform. 9 (2000) 402–407, doi:10.1361/105994900770345791.

[29]

P. Zhang, J. Lindemann, Scr. Mater. 52 (2005) 485–490, doi:10.1016/j.scriptamat.2004.11.003.

[30]

C.I. Chang, C.J. Lee, J.C. Huang, Scr. Mater. 51 (2004) 509–514, doi:10.1016/j.scriptamat.2004.05.043.

[31]

C.H. Chuang, J.C. Huang, P.J. Hsieh, Scr. Mater. 53 (2005) 1455–1460, doi:10.1016/j.scriptamat.2005.08.019.

[32]
M. Gupta, S.N.M Ling, Magnesium, Magnesium Alloys, and Magnesium Composites, John Wiley & Sons, 2011 ISBN 978-1-118-10270-1.
[33]

H.Z. Ye, X.Y. Liu, J. Mater. Sci. 39 (2004) 6153–6171, doi:10.1023/B:JMSC.0000043583.47148.31.

[34]

E. Carreño-Morelli, J. Yang, E. Couteau, K. Hernadi, J.W. Seo, C. Bonjour, L. Forró, R. Schaller, Physica Status Solidi (201 (2004) R53-R55, doi:10.1002/pssa.200409045.

[35]

C.Y.H. Lim, D.K. Leo, J.J.S. Ang, M. Gupta, Wear. 259 (2005) 620–625, doi:10.1016/j.wear.2005.02.006.

[36]

S. Dutta, S. Gupta, M. Roy, ACS Biomater. Sci. Eng. 6 (2020) 4748–4773, doi:10.1021/acsbiomaterials.0c00678.

[37]

S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, A.F. Ismail, S. Sharif, M. Razzaghi, S. Ramakrishna, F. Berto, Materials 13 (2020) 4421, doi:10.3390/ma13194421.

[38]

A. Luo, Metall. Mater. Trans. A 26 (1995) 2445–2455, doi:10.1007/BF02671259.

[39]
T.A. Tański, P. Jarka, Magnesium Alloys Structure and Properties, BoD – Books on Demand, 2022 ISBN 978-1-83962-458-2.
[40]

R. Saranu, R. Chanamala, S. Putti, IOP Conf. Ser.: Mater. Sci. Eng. 961 (2020) 012001, doi:10.1088/1757-899X/961/1/012001.

[41]

F. Khorashadizade, S. Abazari, M. Rajabi, H.R. Bakhsheshi-Rad, A.F. Ismail, S. Sharif, S. Ramakrishna, F. Berto, J. Mater. Res. Technol. 15 (2021) 6034–6066, doi:10.1016/j.jmrt.2021.10.141.

[42]

Y. Xiong, C. Lu, C. Wang, R. Song, J. Alloys. Compd. 625 (2015) 258–265, doi:10.1016/j.jallcom.2014.11.084.

[43]

L. Chen, Y. Yao, Acta Metall. Sin. 27 (2014) 762–774, doi:10.1007/s40195-014-0161-0.

[44]

J. Shen, W. Yin, Q. Wei, Y. Li, J. Liu, L. An, J. Mater. Res. 28 (2013) 1835–1852, doi:10.1557/jmr.2013.16.

[45]

S.T. Amancio-Filho, C. Bueno, J.F. dos Santos, N. Huber, E. Hage, Mater. Sci. Eng.: A 528 (2011) 3841–3848, doi:10.1016/j.msea.2011.01.085.

[46]

R. Bardhan, M. Ruminski, A. Brand, J. Urban, Energy Environ. Sci. 4 (2011) 4882-4895 J. , doi:10.1039/C1EE02258J.

[47]

E.M. Masoud, A.-A. El-Bellihi, W.A. Bayoumy, E.A. Mohamed, J. Mol. Liq. 260 (2018) 237–244, doi:10.1016/j.molliq.2018.03.084.

[48]

P.A. Kallenberger, F.J. Brieler, K. Posern, M. Fröba, Chemie Ingenieur Technik 88 (2016) 379–384, doi:10.1002/cite.201500095.

[49]

B.R. Sunil, G.P.K. Reddy, H. Patle, R. Dumpala, J. Magnes. Alloys 4 (2016) 52–61, doi:10.1016/j.jma.2016.02.001.

[50]

M. Balakrishnan, I. Dinaharan, R. Palanivel, R. Sivaprakasam, J. Magnes. Alloys 3 (2015) 76–78, doi:10.1016/j.jma.2014.12.007.

[51]

Ratna Sunil, Sampath Kumar, U. Chakkingal, V. Nandakumar, M Doble, Mater. Sci. Eng.: C 39 (2014) 315-324 B.T.S. , doi:10.1016/j.msec.2014.03.004.

[52]

M.R. Parray, N.Z. Khan, A. Maqbool, Mater. Today: Proceedings 46 (2021) 6507–6512, doi:10.1016/j.matpr.2021.03.694.

[53]

Ratna Sunil, Sampath Kumar, U. Chakkingal, V. Nandakumar, M Doble, J. Mater. Sci.: Mater. Med. 25 (2014) 975-988 B.T.S. , doi:10.1007/s10856-013-5127-7.

[54]

I. Dinaharan, S. Zhang, G. Chen, Q. Shi, J. Alloys. Compd. 820 (2020) 153071, doi:10.1016/j.jallcom.2019.153071.

[55]

D. Lu, Y. Jiang, R. Zhou, Wear 305 (2013) 286–290, doi:10.1016/j.wear.2012.11.079.

[56]

C. Vidal, P. Alves, M.M. Alves, M.J. Carmezim, M.H. Fernandes, L. Grenho, P.L. Inácio, F.B. Ferreira, T.G. Santos, C. Santos, J. Mech. Behav. Biomed. Mater. 129 (2022) 105137, doi:10.1016/j.jmbbm.2022.105137.

[57]
B. Bagheri, A. Abdollahzadeh, F. Sharifi, M. Abbasi, in: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236, 2022, pp. 2312–2326, doi:10.1177/09544062211024281.
[58]

A. Abdollahzadeh, B. Bagheri, M. Abbasi, F. Sharifi, A.O.Mechanical Moghaddam, Surf. Topogr.: Metrol. Prop. 9 (2021) 035038, doi:10.1088/2051-672X/ac2176.

[59]

B. Bagheri, M. Abbasi, A. Abdollahzadeh, S.E. Mirsalehi, Trans. Nonferrous Metals Soc. China 30 (2020) 905–916, doi:10.1016/S1003-6326(20)65264-5.

[60]

B. Bagheri, A. Abdollahzadeh, M. Abbasi, A.H. Kokabi, Int. J. Mater. Form. 14 (2021) 623–640, doi:10.1007/s12289-020-01551-2.

[61]

B. Bagheri, M. Abbasi, A. Abdollahzadeh, A.H. Kokabi, Int. J. Miner. Metall. Mater. 27 (2020) 1133–1146, doi:10.1007/s12613-020-1993-4.

[62]

T. Xin, Y. Zhao, R. Mahjoub, J. Jiang, A. Yadav, K. Nomoto, R. Niu, S. Tang, F. Ji, Z. Quadir, et al., Sci. Adv. 7 (2021) eabf3039, doi:10.1126/sciadv.abf3039.

[63]

T. Xin, S. Tang, F. Ji, L. Cui, B. He, X. Lin, X. Tian, H. Hou, Y. Zhao, M. Ferry, Acta Mater. 239 (2022) 118248, doi:10.1016/j.actamat.2022.118248.

[64]

M. Daroonparvar, A. Helmer, A.M. Ralls, A.K. Kasar, M.U. Farooq Khan, P.L. Menezes, M. Misra, S. Shao, R.K. Gupta, Corros. Sci. 223 (2023) 111454, doi:10.1016/j.corsci.2023.111454.

[65]

M. Daroonparvar, A. Helmer, A.M. Ralls, M.U. Farooq Khan, A.K. Kasar, R.K. Gupta, M. Misra, S. Shao, P.L. Menezes, N. Shamsaei, J. Magnes. Alloys (2023), doi:10.1016/j.jma.2023.09.008.

[66]

M. Daroonparvar, A. Helmer, A.M. Ralls, M.U. Farooq Khan, A.K. Kasar, P.L. Menezes, M. Misra, R.K. Gupta, Mater. Lett. 346 (2023) 134473, doi:10.1016/j.matlet.2023.134473.

[67]

M. Daroonparvar, H.R. Bakhsheshi-Rad, A. Saberi, M. Razzaghi, A.K. Kasar, S. Ramakrishna, P.L. Menezes, M. Misra, A.F. Ismail, S. Sharif, et al., J. Magnes. Alloys 10 (2022) 2025–2061, doi:10.1016/j.jma.2022.07.012.

[68]

Gh. Barati Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade, J. Magnes. Alloys 5 (2017) 74–132, doi:10.1016/j.jma.2017.02.004.

[69]

G.-H. Lv, H. Chen, L. Li, E.-W. Niu, H. Pang, B. Zou, S.-Z. Yang, Curr. Appl. Phys. 9 (2009) 126–130, doi:10.1016/j.cap.2007.12.007.

[70]

P. Bala Srinivasan, J. Liang, C. Blawert, M. Störmer, W. Dietzel, Appl. Surf. Sci. 255 (2009) 4212–4218, doi:10.1016/j.apsusc.2008.11.008.

[71]

A. Kossenko, M. Zinigrad, Mater. Des. 88 (2015) 302–309, doi:10.1016/j.matdes.2015.08.071.

[72]

N.J. Grant, Metall. Mater. Trans. A 23 (1992) 1083–1093, doi:10.1007/BF02665040.

[73]

S. Jayasathyakawin, M. Ravichandran, N. Baskar, C. Anand Chairman, R. Balasundaram, Mater. Today: Proceedings 27 (2020) 736–741, doi:10.1016/j.matpr.2019.12.003.

[74]

D.B. Kumar, B.S. babu, K.M.A. Jerrin, N. Joseph, A. Jiss, IOP Conf. Ser.: Mater. Sci. Eng. 993 (2020) 012004, doi:10.1088/1757-899X/993/1/012004.

[75]

Z.A. Munir, D.V. Quach, M. Ohyanagi, J. Am. Ceram. Soc. 94 (2011) 1–19, doi:10.1111/j.1551-2916.2010.04210.x.

[76]

D. Paraskevas, K. Vanmeensel, J. Vleugels, W. Dewulf, Y. Deng, J.R. Duflou, Materials 7 (2014) 5664–5687, doi:10.3390/ma7085664.

[77]

O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann, Adv. Eng. Mater. 16 (2014) 830–849, doi:10.1002/adem.201300409.

[78]

S. Li, X. Yang, J. Hou, W. Du, J. Magnes. Alloys 8 (2020) 78–90, doi:10.1016/j.jma.2019.08.002.

[79]

U.C. Oliver, A.V. Sunday, E.I.-E.I. Christain, M.M. Elizabeth, Int. J. Adv. Manuf. Technol. 112 (2021) 1819–1839, doi:10.1007/s00170-020-06480-7.

[80]

M. Abedi, A. Asadi, S. Vorotilo, A.S. A Mukasyan, J. Mater. Sci. 56 (2021) 19739–19766, doi:10.1007/s10853-021-06556-z.

[81]
M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H.U. Kessel, J. Hennicke, R. Kirchner, T. Kessel, M. Suárez, A. Fernández, et al., Sintering Applications, IntechOpen, 2013 ISBN 978-953-51-0974-7.
[82]

I. Nakahata, Y. Tsutsumi, E. Kobayashi, Metals 10 (2020) 1314, doi:10.3390/met10101314.

[83]

M. Březina, M. Hasoňová, S. Fintová, P. Doležal, A. Rednyk, J. Wasserbauer, Mater. Today Commun. 28 (2021) 102569, doi:10.1016/j.mtcomm.2021.102569.

[84]

M. Somasundaram, N.K. Uttamchand, A.R. Annamalai, C.-P. Jen, Nanomaterials 12 (2022) 2178, doi:10.3390/nano12132178.

[85]
B. Ertug, Sintering Applications, BoD – Books on Demand, 2013 ISBN 978-953-51-0974-7.
[86]

M. Oghbaei, O. Mirzaee, J. Alloys. Compd. 494 (2010) 175–189, doi:10.1016/j.jallcom.2010.01.068.

[87]

W.N.A.W. Muhammad, Z. Sajuri, Y. Mutoh, Y. Miyashita, J. Alloys. Compd. 509 (2011) 6021–6029, doi:10.1016/j.jallcom.2011.02.153.

[88]

G. Delaizir, G. Bernard-Granger, J. Monnier, R. Grodzki, O. Kim-Hak, P.-D. Szkutnik, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, et al., Mater. Res. Bull. 47 (2012) 1954–1960, doi:10.1016/j.materresbull.2012.04.019.

[89]
A. Allemand, M. Le Flem - Dormeval, F. Guillard, Sintering of ZrC by Hot Isostatic Pressing (HIP) and Spark Plasma Sintering (SPS) Effect of Impurities, 2005.
[90]

G. Manohar, K.M. Pandey, S.R. Maity, Ceram. Int. 47 (2021) 32610–32618, doi:10.1016/j.ceramint.2021.08.156.

[91]

E. Ghasali, M. Alizadeh, M. Niazmand, T. Ebadzadeh, J. Alloys. Compd. 697 (2017) 200–207, doi:10.1016/j.jallcom.2016.12.146.

[92]

W.L.E. Wong, M. Gupta, Technologies 3 (2015) 1–18, doi:10.3390/technologies3010001.

[93]
Web of science platform. Clarivate.
[94]

Z.-Y. Hu, Z.-H. Zhang, X.-W. Cheng, F.-C. Wang, Y.-F. Zhang, S.-L. Li, Mater. Des. 191 (2020) 108662, doi:10.1016/j.matdes.2020.108662.

[95]

S.O. Jeje, M.B. Shongwe, A.L. Rominiyi, P.A. Olubambi, Int. J. Adv. Manuf. Technol. 117 (2021) 2529–2544, doi:10.1007/s00170-021-07840-7.

[96]

S.D. Oguntuyi, O.T. Johnson, M.B. Shongwe, Int. J. Adv. Manuf. Technol. 116 (2021) 69–82, doi:10.1007/s00170-021-07471-y.

[97]

S.D. Oguntuyi, O.T. Johnson, M.B. Shongwe, Met. Mater. Int. 27 (2021) 2146–2159, doi:10.1007/s12540-020-00874-8.

[98]

O.F. Ogunbiyi, T. Jamiru, E.R. Sadiku, O.T. Adesina, L. Beneke, T.A. Adegbola, Procedia Manuf. 35 (2019) 1324–1329, doi:10.1016/j.promfg.2019.05.022.

[99]

D. Annur, I. Kartika, S. Supriadi, B. Suharno, Mater. Res. Express 8 (2021) 012001, doi:10.1088/2053-1591/abd969.

[100]

M. Abedi, S. Sovizi, A. Azarniya, D. Giuntini, M.E. Seraji, H.R.M. Hosseini, C. Amutha, S. Ramakrishna, A. Mukasyan, Crit. Rev. Solid State Mater. Sci. 48 (2023) 169–214, doi:10.1080/10408436.2022.2049441.

[101]

Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 41 (2006) 763–777, doi:10.1007/s10853-006-6555-2.

[102]

N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner, J. Nanomater. 2012 (2012) e983470, doi:10.1155/2012/983470.

[103]

M. Tokita, Ceramics 4 (2021) 160–198, doi:10.3390/ceramics4020014.

[104]

Z.-H. Zhang, Z.-F. Liu, J.-F. Lu, X.-B. Shen, F.-C. Wang, Y.-D. Wang, Scr. Mater. 81 (2014) 56–59, doi:10.1016/j.scriptamat.2014.03.011.

[105]

D.V. Dudina, B.B. Bokhonov, E.A. Olevsky, Materials 12 (2019) 541, doi:10.3390/ma12030541.

[106]

M. Mondet, E. Barraud, S. Lemonnier, J. Guyon, N. Allain, T. Grosdidier, Acta Mater. 119 (2016) 55–67, doi:10.1016/j.actamat.2016.08.006.

[107]

M. Knapek, M. Zemková, A. Greš, E. Jablonská, F. Lukáč, R. Král, J. Bohlen, P. Minárik, J. Magnes. Alloys 9 (2021) 853–865, doi:10.1016/j.jma.2020.12.017.

[108]

D. Guan, W.M. Rainforth, J. Sharp, J. Gao, I. Todd, J. Alloys. Compd. 688 (2016) 1141–1150, doi:10.1016/j.jallcom.2016.07.162.

[109]
Mater. Sci. Eng.: R: Reports 63 (2009) 127–287, doi:10.1016/j.mser.2008.09.003.
[110]

J. Trapp, B. Kieback, Powder Metall. 62 (2019) 297–306, doi:10.1080/00325899.2019.1653532.

[111]

L. Shamshina, S. Stein, N Abidi, Green Chem. 23 (2021) 9646-9657 J.R. , doi:10.1039/D1GC03128G.

[112]

P. Lv, M.N. Guzik, S. Sartori, J. Huot, J. Mater. Res. Technol. 8 (2019) 1828–1834, doi:10.1016/j.jmrt.2018.12.013.

[113]

P. Minárik, M. Zemková, M. Knapek, S. Šašek, J. Dittrich, F. Lukáč, J. Kozlík, R. Král, Materials 13 (2020) 3973, doi:10.3390/ma13183973.

[114]

T.M. Cook, T.H. Courtney, Metall. Mater. Trans. A 26 (1995) 2389–2397, doi:10.1007/BF02671252.

[115]
P. Raghuraman, R.R. Raman, B. Pitchumani, in: Developments in Mineral Processing, 13, Elsevier, 2000, pp. C4–94. Massacci, P., Ed.; Oral Session.
[116]

N. Wang, Y. Huang, J. Liu, X. Yang, W. Xie, Q. Cai, S. Zheng, Z. Shi, Electrochim. Acta 378 (2021) 138135, doi:10.1016/j.electacta.2021.138135.

[117]

P. Minárik, J. Stráský, J. Veselý, F. Lukáč, B. Hadzima, R. Král, J. Alloys. Compd. 742 (2018) 172–179, doi:10.1016/j.jallcom.2018.01.115.

[118]

Y. Cheng, Z. Cui, L. Cheng, D. Gong, W. Wang, Adv. Powder Technol. 28 (2017) 1129–1135, doi:10.1016/j.apt.2017.01.017.

[119]

D. Paraskevas, S. Dadbakhsh, J. Vleugels, K. Vanmeensel, W. Dewulf, J.R. Duflou, Mater. Des. 109 (2016) 520–529, doi:10.1016/j.matdes.2016.07.082.

[120]

K. Hirota, N. Okabayashi, K. Toyoda, O. Yamaguchi, Mater. Res. Bull. 27 (1992) 319–326, doi:10.1016/0025-5408(92)90061-4.

[121]

F. Czerwinski, Int. Mater. Rev. 60 (2015) 264–296, doi:10.1179/1743280415Y.0000000001.

[122]

F. Czerwinski, JOM 64 (2012) 1477–1483, doi:10.1007/s11837-012-0477-z.

[123]

D.V. Dudina, B.B. Bokhonov, Adv. Powder Technol. 28 (2017) 641–647, doi:10.1016/j.apt.2016.12.001.

[124]

J. Soderlind, M. Cihova, R. Schäublin, S. Risbud, J.F. Löffler, Acta Biomater. 98 (2019) 67–80, doi:10.1016/j.actbio.2019.06.045.

[125]

G. Straffelini, A.P. Nogueira, P. Muterlle, C. Menapace, Mater. Sci. Technol. 27 (2011) 1582–1587, doi:10.1179/1743284710Y.0000000007.

[126]

R. Liu, W. Wang, H. Chen, Z. Lu, W. Zhao, T. Zhang, Adv. Powder Technol. 30 (2019) 2649–2658, doi:10.1016/j.apt.2019.08.012.

[127]

P. Minárik, M. Zemková, F. Lukáč, J. Bohlen, M. Knapek, R. Král, J. Alloys. Compd. 819 (2020) 153008, doi:10.1016/j.jallcom.2019.153008.

[128]

S. Diouf, A. Molinari, Powder. Technol. 221 (2012) 220–227, doi:10.1016/j.powtec.2012.01.005.

[129]

R. Bjørk, V. Tikare, H.L. Frandsen, N. Pryds, J. Am. Ceram. Soc. 96 (2013) 103–110, doi:10.1111/jace.12100.

[130]

J.S.C. Francis, M. Cologna, R. Raj, J. Eur. Ceram. Soc. 32 (2012) 3129–3136, doi:10.1016/j.jeurceramsoc.2012.04.028.

[131]

B. Li, B. Teng, Z. Zhu, J. Magnes. Alloys 8 (2020) 1154–1165, doi:10.1016/j.jma.2019.09.014.

[132]

D. Paraskevas, K. Vanmeensel, J. Vleugels, W. Dewulf, J.R. Duflou, Key. Eng. Mater. 639 (2015) 493–498, doi:10.4028/www.scientific.net/KEM.639.493.

[133]

P. Hendrickx, M.M. Tünçay, M. Brochu, Canadian Metall. Q. 55 (2016) 94–103, doi:10.1080/00084433.2015.1125094.

[134]
Sutherland, A.E. Sustainable recycling of metal machining Swarf via Spark plasma sintering. M.S., Colorado State University: United States – Colorado, 2021.
[135]

V. Kučera, F. Prusa, D. Al-Fe Vojtěch, Solid State Phenomena 270 (2017) 197–204, doi:10.4028/www.scientific.net/SSP.270.197.

[136]

H. Hao, Q. Qiao, Z. Liu, F. Zhao, Resour., Conserv. Recycl. 122 (2017) 114–125, doi:10.1016/j.resconrec.2017.02.005.

[137]

B. Wan, W. Chen, T. Lu, F. Liu, Z. Jiang, M. Mao, Resour., Conserv. Recycl. 125 (2017) 37–47, doi:10.1016/j.resconrec.2017.06.004.

[138]

D.B. Witkin, E.J. Lavernia, Prog. Mater. Sci. 51 (2006) 1–60, doi:10.1016/j.pmatsci.2005.04.004.

[139]

X. Zhang, H. Wang, J. Narayan, C.C. Koch, Acta Mater. 49 (2001) 1319–1326, doi:10.1016/S1359-6454(01)00051-9.

[140]

N.K. Katiyar, K. Biswas, C.S. Tiwary, Int. Mater. Rev. 66 (2021) 493–532, doi:10.1080/09506608.2020.1825175.

[141]

M. Pozuelo, C. Melnyk, W.H. Kao, J.-M. Yang, J. Mater. Res. 26 (2011) 904–911, doi:10.1557/jmr.2010.94.

[142]

M.U.F. Khan, A. Patil, J. Christudasjustus, T. Borkar, R.K. Gupta, J. Magnes. Alloys 8 (2020) 319–328, doi:10.1016/j.jma.2020.02.006.

[143]

T.W. Wong, A. Hadadzadeh, M.J. Benoit, M.A. Wells, J. Mater. Process. Technol. 254 (2018) 238–247, doi:10.1016/j.jmatprotec.2017.11.039.

[144]

J. Liao, M. Hotta, N. Yamamoto, Corros. Sci. 61 (2012) 208–214, doi:10.1016/j.corsci.2012.04.039.

[145]

A. Ünal, Mater. Manuf. Process. 7 (1992) 441–461, doi:10.1080/10426919208947431.

[146]

Y. Zhu, J. Qin, J. Wang, P. Jin, P. Li, Mater. Today Commun. 35 (2023) 105670, doi:10.1016/j.mtcomm.2023.105670.

[147]
S.-J.L. Kang, Sintering: Densification, Grain Growth and Microstructure, Elsevier, 2004 ISBN 978-0-08-049307-7.
[148]

C. Singhal, Q. Murtaza, Mater. Today: Proceedings 5 (2018) 24287–24298, doi:10.1016/j.matpr.2018.10.224.

[149]

P.R. Matli, R.A. Shakoor, A.M. Amer Mohamed, M. Gupta, Metals 6 (2016) 143, doi:10.3390/met6070143.

[150]

D.V. Dudina, K. Georgarakis, E.A. Olevsky, Int. Mater. Rev. 68 (2023) 225–246, doi:10.1080/09506608.2022.2077029.

[151]

K. Narita, E. Kobayashi, T. Sato, Mater. Trans. 57 (2016) 1620–1627, doi:10.2320/matertrans.L-M2016827.

[152]

A.D. Akinwekomi, W.-C. Law, C.-Y. Tang, L. Chen, C.-P. Tsui, Compos. Part B: Engineering 93 (2016) 302–309, doi:10.1016/j.compositesb.2016.03.041.

[153]

Z.R. Yang, S.Q. Wang, M.J. Gao, Y.T. Zhao, K.M. Chen, X.H. Cui, Compos. Part A: Appl. Sci. Manuf. 39 (2008) 1427–1432, doi:10.1016/j.compositesa.2008.05.002.

[154]

H. Pan, F. Pan, R. Yang, J. Peng, A. Tang, Q. Huang, K. Song, Z.Thermal Gao, Mater. Sci. Technol. 30 (2014) 988–994, doi:10.1179/1743284713Y.0000000401.

[155]

B. Hrapkowicz, S. Lesz, M. Karolus, D. Garbiec, J. Wiśniewski, R. Rubach, K. Gołombek, M. Kremzer, J. Popis, Metals 12 (2022) 375, doi:10.3390/met12030375.

[156]
ASM specialty handbook: magnesium and magnesium alloys - ASM International Available online: https://www.asminternational.org/search/-/journal_content/56/10192/06770G/PUBLICATION (accessed on 9 January 2023).
[157]

N. Hansen, Scr. Mater. 51 (2004) 801–806, doi:10.1016/j.scriptamat.2004.06.002.

[158]

L.C. Rongchang ZENG, Acta Metall. Sin. 54 (2018) 1215–1235, doi:10.11900/0412.1961.2018.00032.

[159]

T. Zhang, W. Wang, J. Liu, L. Wang, Y. Tang, K. Wang, Front. Bioeng. Biotechnol. (2022) 10.

[160]

P. Maier, N. Hort, Metals 10 (2020) 1328, doi:10.3390/met10101328.

[161]

V.V. Ramalingam, P. Ramasamy, M.D. Kovukkal, G. Myilsamy, Met. Mater. Int. 26 (2020) 409–430, doi:10.1007/s12540-019-00346-8.

[162]

Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda, Mater. Sci. Eng.: A 354 (2003) 298–305, doi:10.1016/S0921-5093(03)00008-X.

[163]

A.M. Ralls, M. Daroonparvar, S. Sikdar, M.H. Rahman, M. Monwar, K. Watson, C.M. Kay, P.L. Menezes, Tribol. Int. 169 (2022) 107471, doi:10.1016/j.triboint.2022.107471.

[164]

K.-S. Chou, K.-C. Huang, H.-H. Lee, Nanotechnology. 16 (2005) 779, doi:10.1088/0957-4484/16/6/027.

[165]

A. Das, S.P. Harimkar, J. Mater. Sci. Technol. 30 (2014) 1059–1070, doi:10.1016/j.jmst.2014.08.002.

[166]
J. Chen, K. Li, P. Dong, X. Yang, M. Han, Z. Hu, Z. Yan, H. Zhang, in: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 236, 2022, pp. 2074–2084, doi:10.1177/14644207221097496.
[167]

O.N. Olalekan, M. Abdul Samad, S.F. Hassan, M.M.I. Elhady, Tribol.- Mater., Surf. Interfaces 16 (2022) 110–118, doi:10.1080/17515831.2021.1898898.

[168]

J. Umeda, K. Kondoh, H. Imai, Mater. Sci. Eng.: A 504 (2009) 157–162, doi:10.1016/j.msea.2008.10.054.

[169]
P.L. Menezes, K. Kishore, S.V. Kailas, M.R. Lovell, in: Factors Influencing Stick-Slip Motion: Effect of Hardness, Crystal Structure and Surface Texture, American Society of Mechanical Engineers Digital Collection, 2012, pp. 71–73. February 9.
[170]
P.L. Menezes, S.V. Kailas, M.R Lovell, in: Tribology for Scientists and Engineers: From Basics to Advanced Concepts; Menezes, Springer, New York: New York, NY, 2013, pp. 3–41. P.L., Nosonovsky, M., Ingole, S.P., Kailas, S.V., Lovell, M.R., Eds.ISBN 978-1-4614-1945-7.
[171]

H. Dieringa, J. Mater. Sci. 46 (2011) 289–306, doi:10.1007/s10853-010-5010-6.

[172]

D. Berman, A. Erdemir, A.V. Sumant, Mater. Today 17 (2014) 31–42, doi:10.1016/j.mattod.2013.12.003.

[173]

S.F. Hassan, O.O. Nasirudeen, N. Al-Aqeeli, N. Saheb, F. Patel, M.M.A. Baig, J. Alloys. Compd. 646 (2015) 333–338, doi:10.1016/j.jallcom.2015.06.099.

[174]

A.M. Ralls, M. Daroonparvar, A.K. Kasar, M. Misra, P.L. Menezes, Tribol. Int. (2022) 108033, doi:10.1016/j.triboint.2022.108033.

[175]

D. Kumar, J. Jain, N.N. Gosvami, Tribol. Lett. 70 (2022) 27, doi:10.1007/s11249-022-01568-5.

[176]

Z. Shao, M. Nishimoto, I. Muto, Y. Sugawara, J. Magnes. Alloys 11 (2023) 137–153, doi:10.1016/j.jma.2022.10.020.

[177]

A. Dobkowska, Ł. Żrodowski, M. Chlewicka, M. Koralnik, B. Adamczyk-Cieślak, J. Ciftci, B. Morończyk, M. Kruszewski, J. Jaroszewicz, D. Kuc, et al., J. Magnes. Alloys 10 (2022) 3553–3564, doi:10.1016/j.jma.2022.06.003.

[178]

N.Q. Cao, D.N. Pham, N. Kai, H.V. Dinh, S. Hiromoto, E. In Kobayashi, Metals 7 (2017) 358, doi:10.3390/met7090358.

[179]

Z. Cui, Y. Zhang, Y. Cheng, D. Gong, W. Microstructure Wang, Mater. Sci. Eng.: C 99 (2019) 1035–1047, doi:10.1016/j.msec.2019.02.050.

[180]

K.R. Kim, J.W. Ahn, G.-H. Kim, J.H. Han, K.K. Cho, J.-S. Roh, W.J. Kim, H.S. Kim, Met. Mater. Int. 20 (2014) 1095–1101, doi:10.1007/s12540-014-6023-5.

[181]

S. Mathieu, C. Rapin, J. Steinmetz, P. Steinmetz, Corros. Sci. 45 (2003) 2741–2755, doi:10.1016/S0010-938X(03)00109-4.

[182]
Atrens, A.; Liu, M.; Abidin, N.I.Z.; Song, G.-L. In Corrosion of Magnesium Alloys; Song, G., Ed.; Woodhead Publishing Series in Metals and Surface Engineering; Woodhead Publishing, 2011; pp. 117–165 ISBN 978-1-84569-708-2.
[183]

M.-C. Zhao, M. Liu, G. Song, A. Atrens, Corros. Sci. 50 (2008) 1939–1953, doi:10.1016/j.corsci.2008.04.010.

[184]

T. Zhang, Y. Li, F. Wang, Corros. Sci. 48 (2006) 1249–1264, doi:10.1016/j.corsci.2005.05.011.

[185]

M.C. Zhao, P.J. Uggowitzer, M. Liu, P. Schmutz, G. Song, A. Atrens, Mater. Sci. Forum 618–619 (2009) 473–478, doi:10.4028/www.scientific.net/MSF.618-619.473.

[186]

M.-H. Grosjean, M. Zidoune, L. Roué, J. Huot, R. Schulz, Electrochim. Acta 49 (2004) 2461–2470, doi:10.1016/j.electacta.2004.02.001.

[187]

R. Zeng, J. Zhang, W. Huang, W. Dietzel, K.U. Kainer, C. Blawert, W. Ke, Trans. Nonferrous Metals Soc. China 16 (2006) s763-s771, doi:10.1016/S1003-6326(06)60297-5.

[188]

M. Knapek, P. Minárik, J. Čapek, R. Král, J. Kubásek, F. Chmelík, Corros. Sci. 145 (2018) 10–15, doi:10.1016/j.corsci.2018.09.006.

[189]

M. Liu, P. Schmutz, P.J. Uggowitzer, G. Song, A. Atrens, Corros. Sci. 52 (2010) 3687–3701, doi:10.1016/j.corsci.2010.07.019.

[190]

J. Deng, J. Ye, Y. Zhao, Y. Zhu, T. Wu, C. Zhang, L. Dong, H. Ouyang, X. Cheng, X. Wang, ACS Biomater. Sci. Eng. 5 (2019) 4285–4292, doi:10.1021/acsbiomaterials.9b00650.

[191]

J. Fu, Y. Su, Y.-X. Qin, Y. Zheng, Y. Wang, D. Zhu, Biomaterials 230 (2020) 119641, doi:10.1016/j.biomaterials.2019.119641.

[192]

M.U. Farooq Khan, T. Larimian, T. Borkar, R.K. Gupta, Corrosion 77 (2020) 228–241, doi:10.5006/3633.

[193]
Idaho lab unveils industrial-scale advanced manufacturing technology. INL.
[194]

A. Ralls, P. Kumar, M. Misra, P.L. Menezes, JOM 72 (2020) 684–696, doi:10.1007/s11837-019-03687-2.

[195]

G. Manivasagam, S. Suwas, Mater. Sci. Technol. 30 (2014) 515–520, doi:10.1179/1743284713Y.0000000500.

[196]

M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27 (2006) 1728–1734, doi:10.1016/j.biomaterials.2005.10.003.

[197]

T.B. Matias, G.H. Asato, B.T. Ramasco, W.J. Botta, C.S. Kiminami, C. Bolfarini, J. Mater. Res. Technol. 3 (2014) 203–209, doi:10.1016/j.jmrt.2014.03.007.

[198]

M. Revilla-León, M. Sadeghpour, M. Özcan, J. Prosthodont. 29 (2020) 579–593, doi:10.1111/jopr.13212.

[199]

M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A.R. Boccaccini, L. Tayebi, Mater. Sci. Eng.: C 71 (2017) 1253–1266, doi:10.1016/j.msec.2016.11.027.

[200]

R. Imran, A. Al Rashid, M. Koç, Bioprinting 28 (2022) e00236, doi:10.1016/j.bprint.2022.e00236.

[201]

R. Nicula, F. Lüthen, M. Stir, B. Nebe, E. Burkel, Biomol. Eng. 24 (2007) 564–567, doi:10.1016/j.bioeng.2007.08.008.

[202]
Spark Plasma /Field Assisted Sintering (SPS/FAST) by California Nanotechnologies Available online: https://www.calnanocorp.com/sintering-cryogenic-milling-and-machining-services/sintering-bonding-hip/spark-plasma-field-assisted-sintering-spsfast (accessed on 19 July 2023).
[203]
R. Kondo, T.T. Hiroyuki, R. Kondo, T.T. Hiroyuki, Magnesium - The Wonder Element for Engineering/Biomedical Applications, IntechOpen, 2019 ISBN 978-1-78923-842-6.
[204]

M. Jehan, D. Fruchart, J. Alloys. Compd. 580 (2013) S343-S348, doi:10.1016/j.jallcom.2013.03.266.

[205]

K.-F. Aguey-Zinsou, J.-R. Ares-Fernández, Energy Environ. Sci. 3 (2010) 526–543, doi:10.1039/B921645F.

[206]

J. Liu, X. Song, P. Pei, G. Chen, Int. J. Hydrogen. Energy 34 (2009) 4365–4370, doi:10.1016/j.ijhydene.2008.11.113.

[207]

J. Liu, X.P. Song, P. Pei, G.L. Chen, J. Alloys. Compd. 486 (2009) 338–342, doi:10.1016/j.jallcom.2009.06.144.

[208]

M. Nygren, Z. Shen, Key. Eng. Mater. 264–268 (2004) 719–724, doi:10.4028/www.scientific.net/KEM.264-268.719.

[209]

X. Dong, F. Lü, L. Yang, Y. Zhang, X. Influence of Wang, Mater. Chem. Phys. 112 (2008) 596–602, doi:10.1016/j.matchemphys.2008.05.091.

[210]

R. Shah, V. Mittal, E. Matsil, A. Rosenkranz, Adv. Mech. Eng. 13 (2021) 16878140211003398, doi:10.1177/16878140211003398.

[211]

Q. Guo, W. Zeng, S.-L. Liu, Y.-Q. Li, J.-Y. Xu, J.-X. Wang, Y. Wang, Rare Met. 40 (2021) 290–308, doi:10.1007/s12598-020-01493-3.

[212]

F. Liu, T. Wang, X. Liu, L.-Z. Fan, Adv. Energy Mater. 11 (2021) 2000787, doi:10.1002/aenm.202000787.

[213]

T.B. Abbott, Corrosion 71 (2014) 120–127, doi:10.5006/1474.

[214]

N. Wang, W. Li, Y. Huang, G. Wu, M. Hu, G. Li, Z. Shi, J. Power. Sources 436 (2019) 226855, doi:10.1016/j.jpowsour.2019.226855.

[215]

X. Liu, J. Xue, P. Zhang, Z. Wang, J. Power. Sources. 414 (2019) 174–182, doi:10.1016/j.jpowsour.2018.12.092.

[216]

J. Li, Q. Jiang, H. Sun, Y. Li, Corros. Sci. 111 (2016) 288–301, doi:10.1016/j.corsci.2016.05.019.

[217]

W. Zhang, Q. Liu, Y. Chen, G. Wan, Mater. Lett. 232 (2018) 54–57, doi:10.1016/j.matlet.2018.08.069.

[218]

Q. Cui, D. Yi, H. Wang, J. Zhang, J. Xu, B. Wang, J. Rare Earths 37 (2019) 1341–1350, doi:10.1016/j.jre.2018.11.012.

[219]

X. Liu, S. Liu, J. Xue, J. Power. Sources. 396 (2018) 667–674, doi:10.1016/j.jpowsour.2018.06.085.

[220]

H. Zhu, J. Liu, J. Power. Sources. 391 (2018) 10–25, doi:10.1016/j.jpowsour.2018.04.054.

[221]
B. Viswanadhapalli, V.K. Bupesh Raja, Application of magnesium alloys in automotive industry-a review, in: Proceedings of the Emerging Trends in Computing and Expert Technology, Springer International Publishing, Cham, 2020, pp. 519–531. Hemanth, D.J., Kumar, V.D.A., Malathi, S., Castillo, O., Patrut, B., Eds..
[222]
Automotive Applications - International Magnesium Association Available online: https://www.intlmag.org/page/app_automotive_ima (accessed on 20 July 2023).
[223]
160SX English: The Cylinder Block for BMW N52 (6-Cylinder Engine) Series, 2005.
[224]

C. Manière, E. Torresani, E.A. Olevsky, Materials 12 (2019) 557, doi:10.3390/ma12040557.

[225]

G. Moraga, S. Huysveld, F. Mathieux, G.A. Blengini, L. Alaerts, K. Van Acker, S. de Meester, J. Dewulf, Resour., Conserv. Recycl. 146 (2019) 452–461, doi:10.1016/j.resconrec.2019.03.045.

[226]

M. Lieder, A. Rashid, J. Clean. Prod. 115 (2016) 36–51, doi:10.1016/j.jclepro.2015.12.042.

[227]

M. Vukšić, I. Žmak, L. Ćurković, A. Kocjan, Open Ceram. 5 (2021) 100076, doi:10.1016/j.oceram.2021.100076.

[228]
Aguiar, J. Spark Plasma Sintering (SPS) update for the fuel conversion effort at the transient reactor test facility.
[229]

C. Manière, E. Nigito, L. Durand, A. Weibel, Y. Beynet, C. Estournès, Powder. Technol. 320 (2017) 340–345, doi:10.1016/j.powtec.2017.07.048.

[230]

T.-K. Hoang, L. Quéval, C. Berriaud, L. Vido, IEEE Trans. Appl. Superconduct. 28 (2018) 1–5, doi:10.1109/TASC.2018.2810309.

[231]
Novel Dielectric Ceramic by Spark Plasma Sintering | T2 Portal Available online: https://technology.nasa.gov/patent/MFS-TOPS-89 (accessed on 20 July 2023).
[232]

Y. Le Godec, S. Le Floch, Materials 16 (2023) 997, doi:10.3390/ma16030997.

[233]

Z. Shen, M. Johnsson, Z. Zhao, M. Nygren, J. Am. Ceram. Soc. 85 (2002) 1921–1927, doi:10.1111/j.1151-2916.2002.tb00381.x.

[234]

G. Xie, O. Ohashi, T. Sato, N. Yamaguchi, M. Song, K. Mitsuishi, K. Furuya, Mater. Trans. 45 (2004) 904–909, doi:10.2320/matertrans.45.904.

[235]

G. Xie, O. Ohashi, N. Yamaguchi, M. Song, K. Furuya, T. Noda, JSME Mater. Process. Conf. (M & P) 10 (2) (2002) 555–560, doi:10.1299/jsmeintmp.10.2.555.

[236]

A.K. Kushwaha, M. Misra, P.L. Menezes, J. Mater. Eng. Perform. (2023), doi:10.1007/s11665-023-09030-w.

[237]

A.K. Kushwaha, M. Misra, P.L. Menezes, Nanomaterials 12 (2022) 3618, doi:10.3390/nano12203618.

[238]

A.K. Kushwaha, M. John, M. Misra, P.L. Menezes, Crystals 11 (2021) 1317, doi:10.3390/cryst11111317.

[239]

T.R. Malow, C.C. Koch, Mater. Sci. Forum 225–227 (1996) 595–604, doi:10.4028/www.scientific.net/MSF.225-227.595.

[240]

X. Gu, Y. Zheng, S. Zhong, T. Xi, J. Wang, W. Wang, Biomaterials 31 (2010) 1093–1103, doi:10.1016/j.biomaterials.2009.11.015.

[241]

Z. Cai, J. Chen, G. Xie, Intermetallics 148 (2022) 107633, doi:10.1016/j.intermet.2022.107633.

[242]

F.O. Méar, G. Xie, D.V. Louzguine-Luzgin, A. Inoue, Mater. Trans. 50 (2009) 588–591, doi:10.2320/matertrans.MRA2008177.

[243]

K. Li, B. Li, P. Du, T. Xiang, X. Yang, G. Xie, J. Alloys. Compd. 897 (2022) 163219, doi:10.1016/j.jallcom.2021.163219.

[244]

C. Wang, Y. Shuai, Y. Yang, D. Zeng, X. Liang, S. Peng, C. Shuai, J. Alloys. Compd. 897 (2022) 163247, doi:10.1016/j.jallcom.2021.163247.

Journal of Magnesium and Alloys
Pages 405-442
Cite this article:
Ralls AM, Daroonparvar M, Menezes PL. Spark Plasma Sintering of Mg-based Alloys: Microstructure, Mechanical Properties, Corrosion Behavior, and Tribological Performance. Journal of Magnesium and Alloys, 2024, 12(2): 405-442. https://doi.org/10.1016/j.jma.2024.01.029

62

Views

2

Downloads

9

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 17 August 2023
Revised: 07 January 2024
Accepted: 31 January 2024
Published: 18 February 2024
© 2024 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer review under responsibility of Chongqing University

Return