AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (38.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

A comprehensive review on the processing-property relationships of laser strengthened magnesium

Alessandro M. RallsAaksheta AgnelPradeep L. Menezes( )
Department of Mechanical Engineering, University of Nevada Reno, Reno, NV 89557, United States
Show Author Information

Abstract

Among the existing series of softer metals, magnesium (Mg) has attracted much attention due to its impressive strength-to-weight ratio. However, due to its ease of deformability, Mg tends to suffer from rapid degradation in a wide variety of abrasive and electrochemical environments. One method of improving its surface properties is through surface modification techniques. Among the existing techniques, laser shock peening (LSP) has been one of the most widely utilized processes due to its surface-hardening-like effects. Despite this understanding, a comprehensive review has yet to exist that encapsulates the strengthening mechanism of LSP for Mg and its influence in degradation environments. This review aims to encapsulate the existing research around the LSP field for Mg. Specifically, an understanding of the surface-strengthening effects in relation to its mechanical, tribological, corrosion, and tribo-corrosion characteristics is elucidated. Additionally, the feasibility of LSP for Mg materials in critical industries is also discussed. Through this work, a novel understanding of LSP for Mg can be understood, which can provide a future direction for research in this field.

References

[1]

S.V.S. Prasad, S.B. Prasad, K. Verma, R.K. Mishra, V. Kumar, S. Singh, J. Magnes. Alloys 10 (1) (2022) 1–61, doi: 10.1016/j.jma.2021.05.012.

[2]

K. Luo, L. Zhang, G. Wu, W. Liu, W. Ding, J. Magnes. Alloys 7 (2) (2019) 345–354, doi: 10.1016/j.jma.2019.03.002.

[3]

M. Yeganeh, N. Mohammadi, J. Magnes. Alloys 6 (1) (2018) 59–70, doi: 10.1016/j.jma.2018.02.001.

[4]

H. Soyama, C. Kuji, Y. Liao, J. Magnes. Alloys 11 (5) (2023) 1592–1607, doi: 10.1016/j.jma.2023.04.004.

[5]
"Overview of materials for Magnesium Alloy.'' Accessed: Aug. 26, 2023. [Online]. Available: https://www.matweb.com/search/DataSheet.aspx?MatGUID=4e6a4852b14c4b12998acf2f8316c07c&ckck=1.
[6]

L. Li, W. Liu, F. Qi, D. Wu, Z. Zhang, J. Magnes. Alloys 10 (9) (2022) 2334–2353, doi: 10.1016/j.jma.2022.09.003.

[7]

S. Banerjee, P. Sahoo, J.P. Davim, Adv. Mech. Eng. 13 (4) (2021) 16878140211009025, doi: 10.1177/16878140211009025.

[8]
S.N. Mathaudhu, E.A. Nyberg, in: Essential Readings in Magnesium Technology, Springer International Publishing, Cham, 2016, pp. 71–76, doi: 10.1007/978-3-319-48099-2_10. S. N. Mathaudhu, A. A. Luo, N. R. Neelameggham, E. A. Nyberg, and W. H. Sillekens.
[9]

J. Song, J. She, D. Chen, F. Pan, J. Magnes. Alloys 8 (1) (2020) 1–41, doi: 10.1016/j.jma.2020.02.003.

[10]

J. Jiang, X. Geng, X. Zhang, J. Magnes. Alloys (2023), doi: 10.1016/j.jma.2023.05.011.

[11]

Y. Ali, D. Qiu, B. Jiang, F. Pan, M.X. Zhang, J. Alloys Compd. 619 (2015) 639–651, doi: 10.1016/j.jallcom.2014.09.061.

[12]

M. Nasr Azadani, A. Zahedi, O.K. Bowoto, B.I. Oladapo, Prog. Biomater. 11 (2022) 1–26, doi: 10.1007/s40204-022-00182-x.

[13]

L. Ouyang, K. Chen, J. Jiang, X.S. Yang, M. Zhu, J. Alloys Compd. 829 (2020) 154597, doi: 10.1016/j.jallcom.2020.154597.

[14]

Z. Ding, L. Shaw, ACS Sustain. Chem. Eng. 7 (17) (2019) 15064–15072, doi: 10.1021/acssuschemeng.9b03724.

[15]

Z. Ding, H. Li, L. Shaw, Chem. Eng. J. 385 (2020) 123856, doi: 10.1016/j.cej.2019.123856.

[16]

A. Mégret, L. Prince, M.G. Olivier, V. Vitry, Coatings 13 (2) (2023) Art. no. 2, doi: 10.3390/coatings13020448.

[17]

X.B. Chen, N. Birbilis, T.B. Abbott, Corros. Sci. 55 (2012) 226–232, doi: 10.1016/j.corsci.2011.10.022.

[18]

J.E. Gray, B. Luan, J. Alloys Compd. 336 (1) (2002) 88–113, doi: 10.1016/S0925-8388(01)01899-0.

[19]

X. Nie, W. He, S. Zang, X. Wang, J. Zhao, Surf. Coat. Technol. 253 (2014) 68–75, doi: 10.1016/j.surfcoat.2014.05.015.

[20]

R. S, et al., Lasers Manuf. Mater. Process. 6 (4) (2019) 424–463, doi: 10.1007/s40516-019-00098-8.

[21]

J.Z. Lu, L. Zhang, A.X. Feng, Y.F. Jiang, G.G. Cheng, Mater. Des. 30 (9) (2009) 3673–3678, doi: 10.1016/j.matdes.2009.02.015.

[22]

C. Rubio-González, et al., Appl. Surf. Sci. 252 (18) (2006) 6201–6205, doi: 10.1016/j.apsusc.2005.08.062.

[23]
A. Cunha, R.O. Giacomelli, J. Kaufman, J. Brajer, T.S. Pereira, in: Proceedings of the 2021 SBFoton International Optics and Photonics Conference (SBFoton IOPC), 2021, pp. 1–6, doi: 10.1109/SBFotonIOPC50774.2021.9461929.
[24]

Z. Ma, Y.H. Li, C. Wang, Key Eng. Mater. 373–374 (2008) 404–407, doi: 10.4028/www.scientific.net/KEM.373-374.404.

[25]

X. Cao, et al., Surf. Coat. Technol. 403 (2020) 126393, doi: 10.1016/j.surfcoat.2020.126393.

[26]

P. Ganesh, et al., Opt. Lasers Eng. 50 (5) (2012) 678–686, doi: 10.1016/j.optlaseng.2011.11.013.

[27]

S. Huang, et al., Int. J. Fatigue 131 (2020) 105335, doi: 10.1016/j.ijfatigue.2019.105335.

[28]

U. Sánchez-Santana, et al., Wear 260 (7) (2006) 847–854, doi: 10.1016/j.wear.2005.04.014.

[29]

X.Q. Zhang, et al., Mater. Des. 65 (2015) 425–431 1980-2015, doi: 10.1016/j.matdes.2014.09.001.

[30]

X. Li, X. Fang, M. Zhang, H. Zhang, Y. Duan, K. Huang, Int. J. Mach. Tools Manuf. 188 (2023) 104029, doi: 10.1016/j.ijmachtools.2023.104029.

[31]

B. Mao, B. Li, D. Lin, Y. Liao, Mater. Sci. Eng. A 756 (2019) 219–225, doi: 10.1016/j.msea.2019.04.054.

[32]

M.Z. Ge, J.Y. Xiang, J. Alloys Compd. 680 (2016) 544–552, doi: 10.1016/j.jallcom.2016.04.179.

[33]

B. Mao, A. Siddaiah, P.L. Menezes, Y. Liao, J. Mater. Process. Technol. 257 (2018) 227–233, doi: 10.1016/j.jmatprotec.2018.02.041.

[34]

C. Lu, et al., J. Magnes. Alloys 7 (3) (2019) 529–535, doi: 10.1016/j.jma.2019.05.005.

[35]

Q. Xiong, T. Shimada, T. Kitamura, Z. Li, Opt. Laser Technol. 131 (2020) 106409, doi: 10.1016/j.optlastec.2020.106409.

[36]

Z. Tong, et al., Surf. Coat. Technol. 377 (2019) 124799, doi: 10.1016/j.surfcoat.2019.07.023.

[37]

K. Elango, J.S. Hoppius, L.M. Kukreja, A. Ostendorf, E.L. Gurevich, Surf. Coat. Technol. 397 (2020) 125988, doi: 10.1016/j.surfcoat.2020.125988.

[38]

B.P. Fairand, A.H. Clauer, Opt. Commun. 18 (4) (1976) 588–591, doi: 10.1016/0030-4018(76)90327-8.

[39]

J.A. Fox, Appl. Phys. Lett. 24 (10) (2003) 461–464, doi: 10.1063/1.1655012.

[40]

M. John, A.M. Ralls, U.B. Kuruveri, P.L. Menezes, Metals 13 (2) (2023) Art. no. 2, doi: 10.3390/met13020397.

[41]

J. Kaufman, et al., Corros. Sci. 194 (2022) 109925, doi: 10.1016/j.corsci.2021.109925.

[42]

P. Peyre, L. Berthe, V. Vignal, I. Popa, T. Baudin, J. Phys. Appl. Phys. 45 (33) (2012) 335304, doi: 10.1088/0022-3727/45/33/335304.

[43]

J.N. Johnson, R.W. Rohde, J. Appl. Phys. 42 (11) (2003) 4171–4182, doi: 10.1063/1.1659750.

[44]

P. Ballard, J. Fournier, R. Fabbro, J. Frelat, J. Phys. 01 (C3) (1991) C3–494 Ⅳ, doi: 10.1051/jp4:1991369.

[45]

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68 (2) (1990) 775–784, doi: 10.1063/1.346783.

[46]

Y. Yang, et al., Int. J. Adv. Manuf. Technol. 117 (7) (2021) 2377–2385, doi: 10.1007/s00170-021-07080-9.

[47]

Y. Wei, et al., Sci. Rep. 7 (1) (2017) Art. no. 1, doi: 10.1038/srep43948.

[48]

A. Ralls, B. Mao, P. Menezes, J. Tribol. (2023) 1–28, doi: 10.1115/1.4062102.

[49]

P.P. Shukla, P.T. Swanson, C.J. Page, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 228 (5) (2014) 639–652, doi: 10.1177/0954405413507250.

[50]
P. Shukla, ". " Accessed: 2023. [Online]. Available: http://www.shotpeener.com/library/pdf/2009023.pdf
[51]
"Laser Peening or Laser Shocking - Lambda Technologies,'' Lambda Techs. Accessed: Aug. 27, 2023. [Online]. Available: https://www.lambdatechs.com/laser-peening/.
[52]

Y.B. Guo, R. Caslaru, J. Mater. Process. Technol. 211 (4) (2011) 729–736, doi: 10.1016/j.jmatprotec.2010.12.007.

[53]

T.R. Praveen, H.S. Nayaka, S. Swaroop, Surf. Coat. Technol. 369 (2019) 221–227, doi: 10.1016/j.surfcoat.2019.03.072.

[54]

T. Zang, et al., J. Mater. Res. Technol. 25 (2023) 4425–4440, doi: 10.1016/j.jmrt.2023.06.227.

[55]

H. Kamkarrad, S. Narayanswamy, M. Keshmiri, J. Laser MicroNanoeng. 10 (3) (2015) Art. no. 3, doi: 10.2961/jlmn.2015.03.0010.

[56]
H. Kamkarrad, ", 2016. Accessed: Aug. 27, 2023. [Online]. Available: https://spectrum.library.concordia.ca/id/eprint/980834/
[57]

H. Kamkarrad, S. Narayanswamy, J. Mech. Sci. Technol. 30 (7) (2016) 3265–3273, doi: 10.1007/s12206-016-0635-2.

[58]

N. Kashaev, D. Ushmaev, V. Ventzke, B. Klusemann, F. Fomin, Fatigue Fract. Eng. Mater. Struct. 43 (7) (2020) 1500–1513, doi: 10.1111/ffe.13226.

[59]

X.D. Liu, et al., Int. J. Fatigue 54 (2013) 127–132, doi: 10.1016/j.ijfatigue.2013.03.013.

[60]

W. Wang, M. Kattoura, S. Bovid, Z. Zhang, D. Lahrman, W. Cai, Wear 524–525 (2023) 204866, doi: 10.1016/j.wear.2023.204866.

[61]

C. Ye, Y. Liao, S. Suslov, D. Lin, G.J. Cheng, Mater. Sci. Eng. A 609 (2014) 195–203, doi: 10.1016/j.msea.2014.05.003.

[62]

C. Ye, S. Suslov, D. Lin, Y. Liao, X. Fei, G.J. Cheng, J. Appl. Phys. 110 (8) (2011) 083504, doi: 10.1063/1.3651508.

[63]

H. Zhang, et al., J. Alloys Compd. 802 (2019) 573–582, doi: 10.1016/j.jallcom.2019.06.156.

[64]

B. Jose, T. Patil, S. Sudhagara Rajan, K. Praveenkumar, G. Manivasagam, S. Swaroop, Mater. Today Proc. 46 (2021) 578–582, doi: 10.1016/j.matpr.2020.11.289.

[65]

Y. Li, et al., Manuf. Lett. 27 (2021) 26–30, doi: 10.1016/j.mfglet.2020.11.006.

[66]

C.J. Yocom, X. Zhang, Y. Liao, Opt. Laser Technol. 108 (2018) 32–45, doi: 10.1016/j.optlastec.2018.06.032.

[67]

X. Zhang, B. Mao, A. Siddaiah, P.L. Menezes, Y. Liao, J. Mater. Process. Technol. 275 (2020) 116333, doi: 10.1016/j.jmatprotec.2019.116333.

[68]
"Web of Science platform,'' Clarivate. Accessed: Jun. 19, 2023. [Online]. Available: https://clarivate.com/products/scientific-andacademic-research/research-discovery-and-workflow-solutions/webofscience-platform/.
[69]

C. Zhang, D. Wu, Y. He, W. Pan, J. Wang, E. Han, Materials 16 (3) (2023) Art. no. 3, doi: 10.3390/ma16031163.

[70]

J.Z. Lu, et al., Corros. Sci. 60 (2012) 145–152, doi: 10.1016/j.corsci.2012.03.044.

[71]

L. Zhang, et al., Corros. Sci. 66 (2013) 5–13, doi: 10.1016/j.corsci.2012.08.034.

[72]

S. Zhang, Y. Peng, W. Tang, D. Li, Acta Mech. 212 (3) (2010) 293–303, doi: 10.1007/s00707-009-0260-6.

[73]

W. Xu, et al., Nat. Mater. 14 (12) (2015) Art. no. 12, doi: 10.1038/nmat4435.

[74]

R. Peng, C. Xu, Y. Li, S. Zhong, X. Cao, Y. Ding, Mater. Res. Lett. 10 (5) (2022) 318–326, doi: 10.1080/21663831.2022.2050433.

[75]

L. Wu, et al., Mater. Sci. Eng. A 871 (2023) 144844, doi: 10.1016/j.msea.2023.144844.

[76]

X.D. Ren, J.J. Huang, W.F. Zhou, S.D. Xu, F.F. Liu, Mater. Des. 86 (2015) 421–426, doi: 10.1016/j.matdes.2015.07.039.

[77]

B. Mao, Y. Liao, B. Li, Appl. Surf. Sci. 457 (2018) 342–351, doi: 10.1016/j.apsusc.2018.06.176.

[78]

J. Zhang, B. Chen, C. Liu, Mater. Sci. Eng. A 612 (2014) 253–266, doi: 10.1016/j.msea.2014.06.058.

[79]

O. Sitdikov, R. Kaibyshev, Mater. Trans. 42 (9) (2001) 1928–1937, doi: 10.2320/matertrans.42.1928.

[80]

A.M. Ralls, P. Kumar, P.L. Menezes, Processes 9 (1) (2021) Art. no. 1, doi: 10.3390/pr9010031.

[81]

A.M. Ralls, et al., Metals 12 (10) (2022) Art. no. 10, doi: 10.3390/met12101732.

[82]

I. Basu, K.G. Pradeep, C. Mießen, L.A. Barrales-Mora, T. Al-Samman, Acta Mater. 116 (2016) 77–94, doi: 10.1016/j.actamat.2016.06.024.

[83]

X. Li, Y. Zhang, Q. Zhang, J. Zhou, Y. Lu, J. Chen, J. Wuhan Univ. Technol. Mater. Sci. Ed. 31 (3) (2016) 611–615, doi: 10.1007/s11595-016-1418-4.

[84]

M.Z. Ge, J.Y. Xiang, L. Yang, J.T. Wang, Surf. Coat. Technol. 310 (2017) 157–165, doi: 10.1016/j.surfcoat.2016.12.093.

[85]

M.Z. Ge, et al., Surf. Coat. Technol. 337 (2018) 501–509, doi: 10.1016/j.surfcoat.2018.01.043.

[86]

X.D. Ren, et al., Surf. Coat. Technol. 334 (2018) 182–188, doi: 10.1016/j.surfcoat.2017.09.037.

[87]

X.C. Li, Y.K. Zhang, J.F. Chen, Y.L. Lu, Mater. Sci. Technol. 29 (5) (2013) 626–630, doi: 10.1179/1743284712Y.0000000166.

[88]

S. Huang, J.Z. Zhou, S.Q. Jiang, X.D. Yang, C.D. Wang, Y.C. Dai, Mater. Sci. Forum 628–629 (2009) 691–696, doi: 10.4028/www.scientific.net/MSF.628-629.691.

[89]

C. Zhang, Y. Dong, C. Ye, Adv. Eng. Mater. 23 (7) (2021) 2001216, doi: 10.1002/adem.202001216.

[90]

Y. Guo, S. Wang, W. Liu, T. Xiao, G. Zhu, Z. Sun, Metals 9 (11) (2019) Art. no. 11, doi: 10.3390/met9111237.

[91]

A. Siddaiah, B. Mao, Y. Liao, P.L. Menezes, J. Tribol. 142 (4) (2019), doi: 10.1115/1.4045500.

[92]

R. Zhang, et al., Surf. Coat. Technol. 339 (2018) 48–56, doi: 10.1016/j.surfcoat.2018.02.009.

[93]

X. Zheng, Y. Liang, X. He, Z. Han, J. Mater. Eng. Perform. 30 (6) (2021) 4282–4290, doi: 10.1007/s11665-021-05723-2.

[94]

J. Zhou, X. Zhou, H. Li, J. Hu, X. Han, S. Liu, Addit. Manuf. 60 (2022) 103177, doi: 10.1016/j.addma.2022.103177.

[95]

M.P. Sealy, Y.B. Guo, R.C. Caslaru, J. Sharkins, D. Feldman, Int. J. Fatigue 82 (2016) 428–436, doi: 10.1016/j.ijfatigue.2015.08.024.

[96]

N. Hansen, Scr. Mater. 51 (8) (2004) 801–806, doi: 10.1016/j.scriptamat.2004.06.002.

[97]

C.H. Cáceres, J.R. Griffiths, A.R. Pakdel, C.J. Davidson, Mater. Sci. Eng. A 402 (1) (2005) 258–268, doi: 10.1016/j.msea.2005.04.042.

[98]

V.K. Caralapatti, S. Narayanswamy, Opt. Laser Technol. 88 (2017) 75–84, doi: 10.1016/j.optlastec.2016.09.003.

[99]

X. Nie, F. Zhao, L. Tian, L. Yan, Int. J. Adv. Manuf. Technol. 112 (5) (2021) 1661–1673, doi: 10.1007/s00170-020-06491-4.

[100]

B. Mao, A. Siddaiah, X. Zhang, B. Li, P.L. Menezes, Y. Liao, Appl. Surf. Sci. 480 (2019) 998–1007, doi: 10.1016/j.apsusc.2019.03.070.

[101]

Y. Guo, S. Wang, W. Liu, Z. Sun, G. Zhu, T. Xiao, Tribol. Int. 144 (2020) 106138, doi: 10.1016/j.triboint.2019.106138.

[102]

T.R. Praveen, H. Shivananda Nayaka, S. Swaroop, K.R. Gopi, Appl. Surf. Sci. 512 (2020) 145755, doi: 10.1016/j.apsusc.2020.145755.

[103]

B. Mao, Y. Liao, B. Li, Scr. Mater. 165 (2019) 89–93, doi: 10.1016/j.scriptamat.2019.02.028.

[104]

M.A. Pacha-Olivenza, et al., Surf. Coat. Technol. 384 (2020) 125320, doi: 10.1016/j.surfcoat.2019.125320.

[105]

Y. Xiong, X. Hu, Z. Weng, R. Song, J. Mater. Eng. Perform. 29 (9) (2020) 5750–5756, doi: 10.1007/s11665-020-05076-2.

[106]

H. Liu, J. Gu, Z. Tong, D. Yang, H. Yang, X. Ren, Mater. Today Commun. 31 (2022) 103678, doi: 10.1016/j.mtcomm.2022.103678.

[107]

Y. Guo, M.P. Sealy, C. Guo, CIRP Ann. 61 (1) (2012) 583–586, doi: 10.1016/j.cirp.2012.03.125.

[108]

V.K. Caralapatti, S. Narayanswamy, Opt. Laser Technol. 93 (2017) 165–174, doi: 10.1016/j.optlastec.2017.02.010.

[109]

M. Kavyani, G.R. Ebrahimi, H.R. Ezatpour, M. Jahazi, J. Magnes. Alloys 10 (6) (2022) 1640–1662, doi: 10.1016/j.jma.2020.11.013.

[110]

L.S. Wang, et al., Acta Metall. Sin. Engl. Lett. 33 (9) (2020) 1180–1190, doi: 10.1007/s40195-020-01042-y.

[111]

L. Guan, Z. Ye, J. Zhong, Y. Li, Y. Zhang, Opt. Laser Technol. 154 (2022) 108319, doi: 10.1016/j.optlastec.2022.108319.

[112]

C. Wang, K. Luo, J. Cai, J. Lu, Corros. Sci. 209 (2022) 110688, doi: 10.1016/j.corsci.2022.110688.

[113]

K.Y. Luo, C.Y. Wang, C.Y. Cui, J.Z. Lu, Y.F. Lu, J. Alloys Compd. 782 (2019) 1058–1075, doi: 10.1016/j.jallcom.2018.12.224.

[114]

Y. Sun, H. Liu, Y. Ma, H. Zhang, X. Wang, J. Mater. Eng. Perform. 31 (8) (2022) 6595–6605, doi: 10.1007/s11665-022-06712-9.

[115]

H. Liu, Z. Tong, W. Zhou, Y. Yang, J. Jiao, X. Ren, J. Alloys Compd. 846 (2020) 155837, doi: 10.1016/j.jallcom.2020.155837.

[116]

N. Hua, W. Chen, Q. Wang, Q. Guo, Y. Huang, T. Zhang, J. Alloys Compd. 745 (2018) 111–120, doi: 10.1016/j.jallcom.2018.02.138.

[117]

W. Wang, et al., ACS Appl. Bio Mater. 4 (11) (2021) 7903–7912, doi: 10.1021/acsabm.1c00826.

[118]

A. Siddaiah, B. Mao, A.K. Kasar, Y. Liao, P.L. Menezes, Wear 462–463 (2020) 203490, doi: 10.1016/j.wear.2020.203490.

[119]

R.B. Heimann, Surf. Coat. Technol. 405 (2021) 126521, doi: 10.1016/j.surfcoat.2020.126521.

[120]

Q. Fu, et al., J. Magnes. Alloys 11 (5) (2023) 1485–1504, doi: 10.1016/j.jma.2023.05.002.

[121]

V. Tsakiris, C. Tardei, F.M. Clicinschi, J. Magnes. Alloys 9 (6) (2021) 1884–1905, doi: 10.1016/j.jma.2021.06.024.

[122]

H. Delavar, A.J. Mostahsan, H. Ibrahim, J. Magnes. Alloys 11 (4) (2023) 1125–1161, doi: 10.1016/j.jma.2023.04.010.

[123]

F. Witte, et al., Biomaterials 26 (17) (2005) 3557–3563, doi: 10.1016/j.biomaterials.2004.09.049.

[124]

A.C. Hänzi, I. Gerber, M. Schinhammer, J.F. Löffler, P.J. Uggowitzer, Acta Biomater. 6 (5) (2010) 1824–1833, doi: 10.1016/j.actbio.2009.10.008.

[125]

G. Mani, M.D. Feldman, D. Patel, C.M. Agrawal, Biomaterials 28 (9) (2007) 1689–1710, doi: 10.1016/j.biomaterials.2006.11.042.

[126]

E.D. McBRIDE, J. Am. Med. Assoc. 111 (27) (1938) 2464–2467, doi: 10.1001/jama.1938.02790530018007.

[127]

A. Ralls, P. Kumar, M. Misra, P.L. Menezes, JOM 72 (2) (2020) 684–696, doi: 10.1007/s11837-019-03687-2.

[128]

A.C. Alfrey, G.R. LeGendre, W.D. Kaehny, N. Engl. J. Med. 294 (4) (1976) 184–188, doi: 10.1056/NEJM197601222940402.

[129]
K.U. Kainer, in: Metal Matrix Composites, John Wiley & Sons, Ltd, 2006, pp. 1–54, doi: 10.1002/3527608117.ch1.
[130]

B. Liu, J. Yang, X. Zhang, Q. Yang, J. Zhang, X. Li, J. Magnes. Alloys 11 (1) (2023) 15–47, doi: 10.1016/j.jma.2022.12.015.

[131]
S. Mathaudhu and E. Nyberg, "Magnesium Alloys in Aerospace Applications, Past Concerns. . ., " presented at the magnesium elektron, 2023.
[132]

J. Tan, S. Ramakrishna, Appl. Sci. 11 (15) (2021) Art. no. 15, doi: 10.3390/app11156861.

[133]

C. He, et al., Materials 11 (12) (2018) 2429, doi: 10.3390/ma11122429.

[134]

A.A. Luo, J. Magnes. Alloys 1 (1) (2013) 2–22, doi: 10.1016/j.jma.2013.02.002.

[135]
Y. Ye, et al., Adv. Eng. Mater. (2023) 2201451 n/an/a, doi: 10.1002/adem.202201451.
[136]

Z.Q. Zhang, Y.X. Yang, J.A. Li, R.C. Zeng, S.K. Guan, Bioact. Mater. 6 (12) (2021) 4729–4757, doi: 10.1016/j.bioactmat.2021.04.044.

[137]

M. Daroonparvar, et al., Mater. Lett. 346 (2023) 134473, doi: 10.1016/j.matlet.2023.134473.

[138]

M. Daroonparvar, et al., J. Magnes. Alloys (2023), doi: 10.1016/j.jma.2023.09.008.

[139]

M. Daroonparvar, et al., Corros. Sci. 223 (2023) 111454, doi: 10.1016/j.corsci.2023.111454.

[140]

H. Yi, Q. Wang, H. Cao, J. Mater. Res. Technol. 20 (2022) 627–649, doi: 10.1016/j.jmrt.2022.07.083.

[141]

A.M. Ralls, A.K. Kasar, P.L. Menezes, J. Manuf. Mater. Process. 5 (3) (2021) Art. no. 3, doi: 10.3390/jmmp5030097.

[142]

W. Wang, et al., Acta Metall. Sin. Engl. Lett. 33 (1) (2020) 43–57, doi: 10.1007/s40195-019-00971-7.

[143]

B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha, M.A. Omar, J. Mater. Process. Technol. 191 (1) (2007) 77–81, doi: 10.1016/j.jmatprotec.2007.03.045.

[144]

X.C. Luo, et al., Mater. Sci. Eng. A 797 (2020) 139945, doi: 10.1016/j.msea.2020.139945.

[145]

A. Kishore, M. John, A.M. Ralls, S.A. Jose, U.B. Kuruveri, P.L. Menezes, Nanomaterials 12 (9) (2022) Art. no. 9, doi: 10.3390/nano12091415.

[146]

M. John, et al., Appl. Sci. 11 (22) (2021) Art. no. 22, doi: 10.3390/app112210986.

[147]

M. John, A.M. Ralls, M. Misra, P.L. Menezes, J. Nucl. Mater. 584 (2023) 154590, doi: 10.1016/j.jnucmat.2023.154590.

[148]

S. Sikdar, M.H. Rahman, A.M. Ralls, P.L. Menezes, Lubr. Sci. 35 (6) (2023) 420–437, doi: 10.1002/ls.1647.

[149]

L. Chen, Z. Wang, S. Gao, L. Zhu, W. Yu, H. Zheng, Opt. Laser Technol. 153 (2022) 108207, doi: 10.1016/j.optlastec.2022.108207.

[150]

X. Ren, B. Chen, J. Jiao, Y. Yang, W. Zhou, Z. Tong, Opt. Laser Technol. 121 (2020) 105784, doi: 10.1016/j.optlastec.2019.105784.

[151]

Y. Ali, N. Iqbal, S. Lee, Int. J. Energy Res. 45 (4) (2021) 5293–5308, doi: 10.1002/er.6150.

[152]

A.M. Ralls, et al., Materials 16 (17) (2023) Art. no. 17, doi:10.3390/ma16176063.

Journal of Magnesium and Alloys
Pages 1-34
Cite this article:
Ralls AM, Agnel A, Menezes PL. A comprehensive review on the processing-property relationships of laser strengthened magnesium. Journal of Magnesium and Alloys, 2024, 12(1): 1-34. https://doi.org/10.1016/j.jma.2023.12.006

49

Views

2

Downloads

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 30 June 2023
Revised: 25 October 2023
Accepted: 19 December 2023
Published: 22 January 2024
© 2024 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer review under responsibility of Chongqing University

Return