AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (36.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Full Length Article | Open Access

Influence of layer thickness on formation quality, microstructure, mechanical properties, and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion

Bangzhao Yina,b,cJinge Liua,b,cBo Penga,b,cMengran Zhoua,bBingchuan Liud,gXiaolin MaeCaimei WangePeng Wena,b,c( )Yun Tiand,g( )Yufeng Zhengf( )
State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Institute for Precision Medicine, Tsinghua University, Beijing, 102218, China
Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
Beijing AKEC Medical Co., Ltd., Beijing 102200, China
School of Materials Science and Engineering, Peking University, Beijing 100871, China
Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
Show Author Information

Abstract

Laser powder bed fusion (L-PBF) of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts. Layer thickness (LT) is of great significance to the L-PBF process but has not been studied for Mg alloys. In this study, WE43 Mg alloy bulk cubes, porous scaffolds, and thin walls with layer thicknesses of 10, 20, 30, and 40 µm were fabricated. The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds. Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input. For thin wall parts, a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used, and the porosity disappeared by reducing the layer thickness or laser energy input. A deeper keyhole penetration was found in all occasions with porosity, explaining the influence of layer thickness, geometrical structure, and laser energy input on the porosity. All the samples achieved a high fusion quality with a relative density of over 99.5% using the optimized laser energy input. The increased layer thickness resulted to more precipitation phases, finer grain sizes and decreased grain texture. With the similar high fusion quality, the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41% with the 10 µm layer to 287 MPa and 15.12% with the 40 µm layer, in accordance with the microstructural change. The effect of layer thickness on the compressive properties of porous scaffolds was limited. However, the corrosion rate of bulk samples accelerated with increasing the layer thickness, mainly attributed to the increased number of precipitation phases.

References

[1]

T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, Prog. Mater. Sci. 92 (2018) 112–224, doi:10.1016/j.pmatsci.2017.10.001.

[2]

S.L. Sing, J. An, W.Y. Yeong, F.E. Wiria, J. Orthop. Res. 34 (2016) 369–385, doi:10.1002/jor.23075.

[3]

Y. Qin, P. Wen, H. Guo, D. Xia, Y. Zheng, L. Jauer, R. Poprawe, Acta Biomater. 98 (2019) 3–22, doi:10.1016/j.actbio.2019.04.046.

[4]

Y. Yin, Q. Tan, M. Bermingham, N. Mo, J. Zhang, M.X. Zhang, Int. Mater. Rev. (2021) 1–87, doi:10.1080/09506608.2021.1983351.

[5]

V.S. Sufiiarov, A.A. Popovich, E.V. Borisov, I.A. Polozov, D.V. Masaylo, A.V. Orlov, Procedia Eng. 174 (2017) 126–134, doi:10.1016/j.proeng.2017.01.179.

[6]

M. Badrossamay, A. Rezaei, E. Foroozmehr, A. Maleki, A. Foroozmehr, Int. J. Adv. Manuf. Technol. 118 (5) (2022) 1703–1717, doi:10.1007/s00170-021-07719-7.

[7]

A. Leicht, M. Fischer, U. Klement, L. Nyborg, E. Hryha, J. Mater. Eng. Perform. 30 (1) (2021) 575–584, doi:10.1007/s11665-020-05334-3.

[8]

J. Yang, J. Han, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Mater. Des. 110 (2016) 558–570, doi:10.1016/j.matdes.2016.08.036.

[9]

M. Ma, Z. Wang, M. Gao, X. Zeng, J. Mater. Process. Technol. 215 (2015) 142–150, doi:10.1016/j.jmatprotec.2014.07.034.

[10]

X. Shi, S. Ma, C. Liu, C. Chen, Q. Wu, X. Chen, J. Lu, Materials 9 (2016) 975, doi:10.3390/ma9120975.

[11]

W. Shi, P. Wang, Y. Liu, Y. Hou, G. Han, Powder Technol. 360 (2020) 151–164.

[12]

Q.B. Nguyen, D.N. Luu, S.M.L. Nai, Z. Zhu, Z. Chen, J. Wei, Arch. Civ. Mech. Eng. 18 (2018) 948–955.

[13]

D.N. Luu, W. Zhou, S.M.L. Nai, J. Mater. Process. Technol. 299 (2022) 117374, doi:10.1016/j.jmatprotec.2021.117374.

[14]

J. Li, X. Cheng, Z. Li, X. Zong, X.H. Chen, S.Q. Zhang, H.M. Wang, J. Alloy. Compd. 789 (2019) 15–24, doi:10.1016/j.jallcom.2019.03.101.

[15]

I. Yadroitsev, I. Smurov, Phys. Procedia 5 (2010) 551–560, doi:10.1016/j.phpro.2010.08.083.

[16]

A. Gullane, J.W. Murray, C.J. Hyde, S. Sankare, A. Evirgen, A.T. Clare, Mater. Des. 212 (2021) 110256, doi:10.1016/j.matdes.2021.110256.

[17]

A. Cutolo, B. Neirinck, K. Lietaert, C. de Formanoir, B. Van Hooreweder, Addit. Manuf. 23 (2018) 498–504, doi:10.1016/j.addma.2018.07.008.

[18]

A.F. de Souza, K.S. Al-Rubaie, S. Marques, B. Zluhan, E.C. Santos, Mater. Sci. Eng. A 767 (2019) 138425.

[19]

D. Jansen, T. Hanemann, M. Radek, A. Rota, M. Heilmaier, J. Mater. Process. Technol. 298 (2021) 117305, doi:10.1016/j.jmatprotec.2021.117305.

[20]

S. Shamsdini, S. Shakerin, A. Hadadzadeh, B.S. Amirkhiz, M. Mohammadi, Mater. Sci. Eng. A Struct. 776 (2020) 139041, doi:10.1016/j.msea.2020.139041.

[21]

D. Liu, D. Yang, X. Li, S. Hu, J. Mater. Res. Technol. 8 (2019) 1538–1549, doi:10.1016/j.jmrt.2018.08.003.

[22]

Y. Zheng, X. Gu, F. Witte, Mater. Sci. Eng. R Rep. 77 (2014) 1–34, doi:10.1016/j.mser.2014.01.001.

[23]

F. Witte, Acta Biomater. 23 (2015) S28–S40, doi:10.1016/j.actbio.2015.07.017.

[24]

W. Weng, A. Biesiekierski, Y. Li, M. Dargusch, C. Wen, Acta Biomater. 130 (2021) 80–97, doi:10.1016/j.actbio.2021.06.004.

[25]

H. Hyer, L. Zhou, G. Benson, B. McWilliams, K. Cho, Y. Sohn, Addit. Manuf. 33 (2020) 101123, doi:10.1016/j.addma.2020.101123.

[26]

N.A. Zumdick, L. Jauer, L.C. Kersting, T.N. Kutz, J.H. Schleifenbaum, D. Zander, Mater. Charact. 147 (2019) 384–397, doi:10.1016/j.matchar.2018.11.011.

[27]

J. Suchy, M. Horynová, L. Klakurková, D. Palousek, D. Koutny, L. Celko, Materials 13 (2020) (Basel), doi:10.3390/ma13112623.

[28]

F. Bär, L. Berger, L. Jauer, G. Kurtuldu, R. Schäublin, J.H. Schleifenbaum, J.F. Löffler, Acta Biomater. 98 (2019) 36–49, doi:10.1016/j.actbio.2019.05.056.

[29]

S. Gangireddy, B. Gwalani, K. Liu, E.J. Faierson, R.S. Mishra, Addit. Manuf. 26 (2019) 53–64, doi:10.1016/j.addma.2018.12.015.

[30]

F. Benn, N. Kröger, M. Zinser, K. van Gaalen, T.J. Vaughan, M. Yan, R. Smeets, E. Bibiza, S. Malinov, F. Buchanan, A. Kopp, Mater. Sci. Eng. C. 124 (2021), doi:10.1016/j.msec.2021.112016.

[31]

M. Esmaily, Z. Zeng, A.N. Mortazavi, A. Gullino, S. Choudhary, T. Derra, F. Benn, F. D′Elia, M. Müther, S. Thomas, A. Huang, A. Allanore, A. Kopp, N. Birbilis, Addit. Manuf. 35 (2020) 101321, doi:10.1016/j.addma.2020.101321.

[32]

Y. Li, J. Zhou, P. Pavanram, M.A. Leeflang, L.I. Fockaert, B. Pouran, N. Tümer, K.U. Schröder, A.A. Zadpoor, Acta Biomater. 67 (2018) 378–392, doi:10.1016/j.actbio.2017.12.008.

[33]

M. Li, F. Benn, T. Derra, N. Kröger, M. Zinser, R. Smeets, J.M. Molina-Aldareguia, A. Kopp, J. LLorca, Mater. Sci. Eng. C 119 (2021) 111623, doi:10.1016/j.msec.2020.111623.

[34]

A. Kopp, T. Derra, M. Müther, L. Jauer, J.H. Schleifenbaum, M. Voshage, O. Jung, R. Smeets, N. Kröger, Acta Biomater. 98 (2019) 23–35, doi:10.1016/j.actbio.2019.04.012.

[35]

J. Liu, B. Liu, S. Min, B. Yin, B. Peng, Z. Yu, C. Wang, X. Ma, P. Wen, Y. Tian, Bioact. Mater. 16 (2022) 301–319, doi:10.1016/j.bioactmat.2022.02.020.

[36]

C. Gao, S. Li, L. Liu, S. Bin, Y. Yang, S. Peng, C. Shuai, J. Magnes. Alloy. 9 (2021) 305–316, doi:10.1016/j.jma.2020.03.016.

[37]

C. Gao, Z. Zeng, S. Peng, W. Tan, C. Shuai, Adv. Eng. Mater. 23 (2021) 2100389, doi:10.1002/adem.202100389.

[38]

B. Liu, G. Fang, L. Lei, X. Yan, Int. J. Mech. Sci. 228 (2022) 107478, doi:10.1016/j.ijmecsci.2022.107478.

[39]

J. Liu, P. Wen, Mater. Des. (2022) 110505, doi:10.1016/j.matdes.2022.110505.

[40]

R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, A.D. Rollett, Science 363 (6429) (2019) 849–852, doi:10.1126/science.aav4687.

[41]

C. Zhao, N.D. Parab, X. Li, K. Fezzaa, W. Tan, A.D. Rollett, T. Sun, Science 370 (2020) 1080–1086.

[42]

T.M. Wischeropp, C. Emmelmann, M. Brandt, A. Pateras, Addit. Manuf. 28 (2019) 176–183, doi:10.1016/j.addma.2019.04.019.

[43]

Y. Kang, Z. Huang, S. Wang, H. Yan, R. Chen, J. Huang, J. Magnes. Alloy. 8 (1) (2020) 103–110, doi:10.1016/j.jma.2019.11.012.

[44]
F.J. Humphreys, M. Hatherly, in: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004, pp. 451–466.
[45]

M. Esmaily, J. Svensson, S. Fajardo, N. Birbilis, G. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L. Johansson, Prog. Mater. Sci. 89 (2017) 92–193, doi:10.1016/j.pmatsci.2017.04.011.

[46]

S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Mater. Sci. Eng. C 68 (2016) 948–963, doi:10.1016/j.msec.2016.06.020.

[47]

R.B. Heimann, Surf. Coat. Technol. 405 (2021) 126521, doi:10.1016/j.surfcoat.2020.126521.

[48]

G. Wu, J.M. Ibrahim, P.K. Chu, Surf. Coat. Technol. 233 (2013) 2–12, doi:10.1016/j.surfcoat.2012.10.009.

Journal of Magnesium and Alloys
Pages 1367-1385
Cite this article:
Yin B, Liu J, Peng B, et al. Influence of layer thickness on formation quality, microstructure, mechanical properties, and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion. Journal of Magnesium and Alloys, 2024, 12(4): 1367-1385. https://doi.org/10.1016/j.jma.2022.09.016

90

Views

2

Downloads

20

Crossref

27

Web of Science

28

Scopus

0

CSCD

Altmetrics

Received: 03 June 2022
Revised: 20 August 2022
Accepted: 10 September 2022
Published: 07 October 2022
© 2022 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer review under responsibility of Chongqing University

Return