AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iLIVER Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

New approaches to the treatment of metabolic dysfunction-associated steatotic liver with natural products

Department of Pharmacy Practice, SGT College of Pharmacy, SGT University, Gurgaon-Badli Road Chandu, Gurugram 122505, India
Department of Pharmaceutics, SGT College of Pharmacy, SGT University, Gurgaon-Badli Road Chandu, Gurugram 122505, India
Ram Gopal College of Pharmacy, Gurugram University, Gurugram 122506, India
University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka Delhi 110078, India
Pharmaceutical Sciences and University School of Medicine and Allied Sciences, Guru Gobind Singh Indraprastha University, Dwarka Delhi 110078, India
Show Author Information

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a widespread and potentially severe liver condition characterized by abnormal fat accumulation in the liver unrelated to alcohol consumption. According to the World Health Organization, MASLD is the most prevalent liver disease globally, it affects approximately 25% of the world’s population, nearly two billion individuals. This staggering prevalence underscores the urgent need for effective and safe therapeutic approaches to address this escalating global health concern. Natural products have emerged as promising candidates for preventing and treating MASLD in recent years because of their diverse bioactive compounds and minimal side effects. Well-known natural products such as curcumin, resveratrol, green tea polyphenols, and silymarin exhibit notable hepatoprotective effects by influencing lipid metabolism, mitigating oxidative stress, and reducing inflammation. Ongoing research highlights the potential of phytochemicals from traditional medicinal plants, such as Phyllanthus and Salvia, in ameliorating liver steatosis and fibrosis. These natural products demonstrate the capacity to impede fibrogenesis by interfering with hepatic stellate cell activation, which is pivotal in liver fibrosis development. Recent studies underscore the significance of natural products in modulating the gut–liver axis, where they restore balance to the gut microbiota and enhance intestinal barrier function, which slows the progression of MASLD. Moreover, advancements in nanotechnology facilitate the targeted delivery of natural product-derived compounds, which enhances their bioavailability and therapeutic efficacy. Harnessing the potency of natural products offers a promising avenue for developing novel, safer therapies for MASLD and addressing a critical global health concern with far-reaching implications for public well-being.

References

[1]

Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American association for the study of liver diseases, American college of gastroenterology, and the American gastroenterological association. Am J Gastroenterol 2012;107(6):811–26. https://doi.org/10.1038/ajg.2012.128.

[2]

Milić S, Lulić D, Štimac D. Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J Gastroenterol 2014;20(28):9330–7. https://doi.org/10.3748/wjg.v20.i28.9330.

[3]

Leoni S, Tovoli F, Napoli L, et al. Current guidelines for the management of non-alcoholic fatty liver disease: a systematic review with comparative analysis. World J Gastroenterol 2018;24(30):3361–73. https://doi.org/10.3748/wjg.v24.i30.3361.

[4]

Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci 2019;76(1):99–128. https://doi.org/10.1007/s00018-018-2947-0.

[5]

Zhu C, Kim K, Wang X, et al. Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Sci Transl Med 2018;10(468):eaat0344. https://doi.org/10.1126/scitranslmed.aat0344.

[6]

Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018;15(1):11–20. https://doi.org/10.1038/nrgastro.2017.109.

[7]

Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016;64(1):73–84. https://doi.org/10.1002/hep.28431.

[8]

Wong RJ, Cheung R, Ahmed A. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the U.S. Hepatology 2014;59(6):2188–95. https://doi.org/10.1002/hep.26986.

[9]

Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metabol 2020;42:101092. https://doi.org/10.1016/j.molmet.2020.101092.

[10]

Dietrich P, Hellerbrand C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol 2014;28(4):637–53. https://doi.org/10.1016/j.bpg.2014.07.008.

[11]

Marchesini G, Marzocchi R, Agostini F, et al. Nonalcoholic fatty liver disease and the metabolic syndrome. Curr Opin Lipidol 2005;16(4):421–7. https://doi.org/10.1097/01.mol.0000174153.53683.f2.

[12]

Byrne CD, Targher G. MASLD: a multisystem disease. J Hepatol 2015;62(1 Suppl):S47–64.

[13]

Basaranoglu M, Basaranoglu G, Sentürk H. From fatty liver to fibrosis: a tale of “second hit.”. World J Gastroenterol 2013;19(8):1158–65. https://doi.org/10.3748/wjg.v19.i8.1158.

[14]

Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016;65(8):1038–48. https://doi.org/10.1016/j.metabol.2015.12.012.

[15]

Roeb E, Geier A. Nonalcoholic steatohepatitis (NASH) - current treatment recommendations and future developments. Z Gastroenterol 2019;57(4):508–17. https://doi.org/10.1055/a-0784-8827.

[16]

Byrne CD, Targher G. Ectopic fat, insulin resistance, and nonalcoholic fatty liver disease: implications for cardiovascular disease. Arterioscler Thromb Vasc Biol 2014;34(6):1155–61. https://doi.org/10.1161/ATVBAHA.114.303034.

[17]

Hasan KM, Parveen M, Pena A, et al. Fatty acid excess dysregulates CARF to initiate the development of hepatic steatosis. Cells 2023;12(7):1069. https://doi.org/10.3390/cells12071069.

[18]

Takamura T, Misu H, Ota T, et al. Fatty liver as a consequence and cause of insulin resistance: lessons from type 2 diabetic liver. Endocr J 2012;59(9):745–63. https://doi.org/10.1507/endocrj.ej12-0228.

[19]

Machado MV, Cortez-Pinto H. Non-alcoholic fatty liver disease: what the clinician needs to know. World J Gastroenterol 2014;20(36):12956–80. https://doi.org/10.3748/wjg.v20.i36.12956.

[20]

Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metabol 2021;50:101238. https://doi.org/10.1016/j.molmet.2021.101238.

[21]

Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005;115(5):1343–51. https://doi.org/10.1172/JCI23621.

[22]

Tanase DM, Gosav EM, Costea CF, et al. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD). J Diabetes Res 2020;2020:3920196. https://doi.org/10.1155/2020/3920196.

[23]

Zechner R, Kienesberger PC, Haemmerle G, et al. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 2009;50(1):3–21. https://doi.org/10.1194/jlr.R800031-JLR200.

[24]

Brahma MK, Adam RC, Pollak NM, et al. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. J Lipid Res 2014;55(11):2229–41. https://doi.org/10.1194/jlr.M044784.

[25]

Haemmerle G, Lass A, Zimmermann R, et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 2006;312(5774):734–7. https://doi.org/10.1126/science.1123965.

[26]

Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell 2012;148(5):852–71. https://doi.org/10.1016/j.cell.2012.02.017.

[27]

Luukkonen PK, Qadri S, Ahlholm N, et al. Distinct contributions of metabolic dysfunction and genetic risk factors in the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2022;76(3):526–35. https://doi.org/10.1016/j.jhep.2021.10.013.

[28]

Ferré P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metabol 2010;12(Suppl 2):83–92. https://doi.org/10.1111/j.1463-1326.2010.01275.x.

[29]

Song Z, Xiaoli AM, Yang F. Regulation and metabolic significance of De novo lipogenesis in adipose tissues. Nutrients 2018;10(10):1383. https://doi.org/10.3390/nu10101383.

[30]

Dong Q, Majumdar G, O'Meally RN, et al. Insulin-induced de novo lipid synthesis occurs mainly via mTOR-dependent regulation of proteostasis of SREBP-1c. Mol Cell Biochem 2020;463(1–2):13–31. https://doi.org/10.1007/s11010-019-03625-5.

[31]

Liu L, Yang M, Lin X, et al. Modulation of hepatic sterol regulatory element-binding protein-1c-mediated gene expression contributes to Salacia oblonga root-elicited improvement of fructose-induced fatty liver in rats. J Ethnopharmacol 2013;150(3):1045–52. https://doi.org/10.1016/j.jep.2013.10.020.

[32]

Dentin R, Benhamed F, Hainault I, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 2006;55(8):2159–70. https://doi.org/10.2337/db06-0200.

[33]

Denechaud PD, Dentin R, Girard J, et al. Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Lett 2008;582(1):68–73. https://doi.org/10.1016/j.febslet.2007.07.084.

[34]
Lawitz EJ, Coste A, Poordad F, et al. Acetyl-CoA carboxylase inhibitor GS-0976 for 12 weeks reduces hepatic de novo lipogenesis and steatosis in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 2018;16(12):1983. https://doi.org/10.1016/j.cgh.2018.04.042. 91.e3.
[35]

Fan JG, Kim SU, Wong VWS. New trends on obesity and NAFLD in Asia. J Hepatol 2017;67(4):862–73. https://doi.org/10.1016/j.jhep.2017.06.003.

[36]

Yki-Järvinen H. Nutritional modulation of non-alcoholic fatty liver disease and insulin resistance. Nutrients 2015;7(11):9127–38. https://doi.org/10.3390/nu7115454.

[37]

Sakurai Y, Kubota N, Yamauchi T, et al. Role of insulin resistance in MAFLD. Int J Mol Sci 2021;22(8):4156. https://doi.org/10.3390/ijms22084156.

[38]

Basaranoglu M, Basaranoglu G, Sabuncu T, et al. Fructose as a key player in the development of fatty liver disease. World J Gastroenterol 2013;19(8):1166–72. https://doi.org/10.3748/wjg.v19.i8.1166.

[39]

Jensen T, Abdelmalek MF, Sullivan S, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol 2018;68(5):1063–75. https://doi.org/10.1016/j.jhep.2018.01.019.

[40]

Lê KA, Ith M, Kreis R, et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am J Clin Nutr 2009;89(6):1760–5. https://doi.org/10.3945/ajcn.2008.27336.

[41]

Tappy L, Lê KA. Does fructose consumption contribute to non-alcoholic fatty liver disease? Clin Res Hepatol Gastroenterol 2012;36(6):554–60. https://doi.org/10.1016/j.clinre.2012.06.005.

[42]

Vos MB, Lavine JE. Dietary fructose in nonalcoholic fatty liver disease. Hepatology 2013;57(6):2525–31. https://doi.org/10.1002/hep.26299.

[43]

Song Z, Xiaoli AM, Yang F. Regulation and metabolic significance of De novo lipogenesis in adipose tissues. Nutrients 2018;10(10):1383. https://doi.org/10.3390/nu10101383.

[44]

Chen Z, Tian R, She Z, et al. Role of oxidative stress in nonalcoholic fatty liver disease pathogenesis. Free Radic Biol Med 2020;152:116–41.

[45]

Begriche K, Igoudjil A, Pessayre D, et al. Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 2006;6(1):1–28. https://doi.org/10.1016/j.mito.2005.10.004.

[46]

Farzanegi P, Dana A, Ebrahimpoor Z, et al. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD):roles of oxidative stress and inflammation. Eur J Sport Sci 2019;19(7):994–1003. https://doi.org/10.1080/17461391.2019.1571114.

[47]

Pottoo FH, Sharma S, Javed MN, et al. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab Rev 2020;52(1):185–204. https://doi.org/10.1080/03602532.2020.1726942.

[48]

Raj S, Manchanda R, Bhandari M, et al. Review on natural bioactive products as radioprotective therapeutics: present and past perspective. Curr Pharmaceut Biotechnol 2022;23(14):1721–38. https://doi.org/10.2174/1389201023666220110104645.

[49]

Aslam M, Javed MN, Deeb HH, et al. Lipid nanocarriers for neurotherapeutics: introduction, challenges, blood-brain barrier, and promises of delivery approaches. CNS Neurol Disord: Drug Targets 2022;21(10):952–65. https://doi.org/10.2174/1871527320666210706104240.

[50]

Kumari N, Daram N, Alam MS, et al. Rationalizing the use of polyphenol nano-formulations in the therapy of neurodegenerative diseases. CNS Neurol Disord: Drug Targets 2022;21(10):966–76. https://doi.org/10.2174/1871527321666220512153854.

[51]

Javed MN, Pottoo FH, Alam MS. Metallic nanoparticle alone and/or in combination as novel agent for the treatment of uncontrolled electric conductance related disorders and/or seizure, epilepsy & convulsions. Patent acquired on October. 2016;10:40.

[52]

Mall SK, Yadav T, Waziri A, et al. Treatment opportunities with Fernandoa adenophylla and recent novel approaches for natural medicinal phytochemicals as a drug delivery system. Explor Med 2022;3(6):516–39. https://doi.org/10.37349/emed.2022.00111.

[53]

Sethiya NK, Ghiloria N, Srivastav A, et al. Therapeutic potential of myricetin in the treatment of neurological, neuropsychiatric, and neurodegenerative disorders. CNS Neurol Disord: Drug Targets 2024;23(7):865–82. https://doi.org/10.2174/1871527322666230718105358.

[54]

Hooda N, Ahlawat A, Kumari P, et al. Role of nanomedicine for targeted drug delivery in livestock: FutureProspective. Pharm Nanotechnol 2023;12:e281123223960. https://doi.org/10.2174/0122117385267911231109184511.

[55]

Kumari P, Shirumalla RK, Bhalla V, et al. New emerging aspect of herbal extracts for the treatment of osteoporosis: overview. Curr Rheumatol Rev 2024;20(4):361–72. https://doi.org/10.2174/0115733971273691231121131455.

[56]

Yadav T, Yadav HKS, Raizaday A, et al. The treatment of psoriasis via herbal formulation and nano-polyherbal formulation: a new approach. Bioimpacts 2024. https://doi.org/10.34172/bi.30341.

[57]

Yadav R, Yadav T, Upadhayay A, et al. The influence of phytoconstituents for the management of antipsoriatic activity in various animal models. Antiinflamm Antiallergy Agents Med Chem 2024. https://doi.org/10.2174/0118715230320581240711063558.

[58]

Singh P, Alam MS, Arif M, et al. An update on natural bioactive components of traditional preparations for the treatment of nephrolithiasis; a review. J Nephropharmacol 2024;13(2):e10545. https://doi.org/10.34172/npj.2024.10545.

[59]

Kumari P, Devi L, Kadian, et al. Eco-friendly synthesis of Azadirachta indica-based metallic nanoparticles for biomedical application & future prospective. Pharm Nanotechnol 2024. https://doi.org/10.2174/0122117385262947240206055107.

[60]

Raza S, Rajak S, Upadhyay A, et al. Current treatment paradigms and emerging therapies for NAFLD/NASH. Front Biosci 2021;26(2):206–37. https://doi.org/10.2741/4892.

[61]

Teede H, Deeks A, Moran L. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med 2010;8:41. https://doi.org/10.1186/1741-7015-8-41.

[62]

Preiss D, Sattar N. Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis and treatment considerations. Clin Sci (Lond) 2008;115(5):141–50. https://doi.org/10.1042/CS20070402.

[63]

Xu Y, Guo W, Zhang C, et al. Herbal medicine in the treatment of non-alcoholic fatty liver diseases-efficacy, action mechanism, and clinical application. Front Pharmacol 2020;11:601. https://doi.org/10.3389/fphar.2020.00601.

[64]

Yao H, Qiao YJ, Zhao YL, et al. Herbal medicines and nonalcoholic fatty liver disease. World J Gastroenterol 2016;22(30):6890–905. https://doi.org/10.3748/wjg.v22.i30.6890.

[65]

Yang Y, Li W, Liu Y, et al. Alpha-lipoic acid improves high-fat diet-induced hepatic steatosis by modulating the transcription factors SREBP-1, FoxO1 and Nrf2 via the SIRT1/LKB1/AMPK pathway. J Nutr Biochem 2014;25(11):1207–17. https://doi.org/10.1016/j.jnutbio.2014.06.001.

[66]

Glasgow E. Scotland and the encyclopaedia britannica. Libr Rev 2002;51:263–7. https://doi.org/10.1108/00242530210428764.

[67]

Sahebkar A. Potential efficacy of ginger as a natural supplement for nonalcoholic fatty liver disease. World J Gastroenterol 2011;17(2):271–2. https://doi.org/10.3748/wjg.v17.i2.271.

[68]

Li Z, Wang Y, Xu Q, et al. Berberine and health outcomes: an umbrella review. Phytother Res 2023;37(5):2051–66. https://doi.org/10.1002/ptr.7806.

[69]

Yang S, Cao S, Li C, et al. Berberrubine, a main metabolite of berberine, alleviates non-alcoholic fatty liver disease via modulating glucose and lipid metabolism and restoring gut microbiota. Front Pharmacol 2022;13:913378. https://doi.org/10.3389/fphar.2022.913378.

[70]

Vivoli E, Cappon A, Milani S, et al. NLRP3 inflammasome as a target of berberine in experimental murine liver injury: interference with P2X7 signalling. Clin Sci (Lond) 2016;130(20):1793–806. https://doi.org/10.1042/CS20160400.

[71]

Zhou H, Feng L, Xu F, et al. Berberine inhibits palmitate-induced NLRP3 inflammasome activation by triggering autophagy in macrophages: a new mechanism linking berberine to insulin resistance improvement. Biomed Pharmacother 2017;89:864–74. https://doi.org/10.1016/j.biopha.2017.03.003.

[72]

Zhang D, Liu L, Jia Z, et al. Flavonoids of Herba Epimedii stimulate osteogenic differentiation and suppress adipogenic differentiation of primary mesenchymal stem cells via estrogen receptor pathway. Pharm Biol 2016;54(6):954–63. https://doi.org/10.3109/13880209.2015.1079224.

[73]

Zhang TT, Yang L, Jiang JG. Bioactive comparison of main components from unripe fruits of Rubus chingii Hu and identification of the effective component. Food Funct 2015;6(7):2205–14. https://doi.org/10.1039/c5fo00406c.

[74]

Bouvier F, Rahier A, Camara B. Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 2005;44(6):357–429. https://doi.org/10.1016/j.plipres.2005.09.003.

[75]

Grassmann J. Terpenoids as plant antioxidants. Vitam Horm 2005;72:505–35. https://doi.org/10.1016/S0083-6729(05)72015-X.

[76]

Kim T, Song B, Cho KS, et al. Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. Int J Mol Sci 2020;21(6):2187. https://doi.org/10.3390/ijms21062187.

[77]

Arendt P, Pollier J, Callewaert N, et al. Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms. Plant J 2016;87(1):16–37. https://doi.org/10.1111/tpj.13138.

[78]

Choi YJ, Park SY, Kim JY, et al. Combined treatment of betulinic acid, a PTP1B inhibitor, with Orthosiphon stamineus extract decreases body weight in high-fat-fed mice. J Med Food 2013;16(1):2–8. https://doi.org/10.1089/jmf.2012.2384.

[79]

de Melo CL, Queiroz MGR, Arruda Filho ACV, et al. Betulinic acid, a natural pentacyclic triterpenoid, prevents abdominal fat accumulation in mice fed a high-fat diet. J Agric Food Chem 2009;57(19):8776–81. https://doi.org/10.1021/jf900768w.

[80]

Ruan S, Han C, Sheng Y, et al. Antcin A alleviates pyroptosis and inflammatory response in Kupffercells of non-alcoholic fatty liver disease by targeting NLRP3. Int Immunopharm 2021;100:108126. https://doi.org/10.1016/j.intimp.2021.108126.

[81]

Stegelmeier BL, Brown AW, Welch KD. Safety concerns of herbal products and traditional Chinese herbal medicines: dehydropyrrolizidine alkaloids and aristolochic acid. J Appl Toxicol 2015;35(12):1433–7. https://doi.org/10.1002/jat.3192.

[82]

Kukula-Koch W, Koch W, Angelis A, et al. Application of pH-zone refining hydrostatic countercurrent chromatography (hCCC) for the recovery of antioxidant phenolics and the isolation of alkaloids from Siberian barberry herb. Food Chem 2016;203:394–401. https://doi.org/10.1016/j.foodchem.2016.02.096.

[83]

Zhang J, Cao H, Zhang B, et al. Berberine potently attenuates intestinal polyps growth in ApcMin mice and familial adenomatous polyposis patients through inhibition of Wnt signalling. J Cell Mol Med 2013;17(11):1484–93. https://doi.org/10.1111/jcmm.12119.

[84]

Zhang H, Wei J, Xue R, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism 2010;59(2):285–92. https://doi.org/10.1016/j.metabol.2009.07.029.

[85]

Zhou L, Wang X, Yang Y, et al. Berberine attenuates cAMP-induced lipolysis via reducing the inhibition of phosphodiesterase in 3T3-L1 adipocytes. Biochim Biophys Acta 2011;1812(4):527–35. https://doi.org/10.1016/j.bbadis.2010.10.001.

[86]

Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 2004;10(12):1344–51. https://doi.org/10.1038/nm1135.

[87]

Kennedy OJ, Roderick P, Poole R, et al. Coffee, caffeine and non-alcoholic fatty liver disease? Therap Adv Gastroenterol 2016;9(3):417–8. https://doi.org/10.1177/1756283X16636765.

[88]

Shokouh P, Jeppesen PB, Hermansen K, et al. A combination of coffee compounds shows insulin-sensitizing and hepatoprotective effects in a rat model of diet-induced metabolic syndrome. Nutrients 2017;10(1):6. https://doi.org/10.3390/nu10010006.

[89]

Farzaei MH, Zobeiri M, Parvizi F, et al. Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients 2018;10(7):855. https://doi.org/10.3390/nu10070855.

[90]

Cacciapuoti F, Scognamiglio A, Palumbo R, et al. Silymarin in non alcoholic fatty liver disease. World J Hepatol 2013;5(3):109–13. https://doi.org/10.4254/wjh.v5.i3.109.

[91]

Ou Q, Weng Y, Wang S, et al. Silybin alleviates hepatic steatosis and fibrosis in NASH mice by inhibiting oxidative stress and involvement with the nf-κB pathway. Dig Dis Sci 2018;63(12):3398–408. https://doi.org/10.1007/s10620-018-5268-0.

[92]

Salamone F, Galvano F, Cappello F, et al. Silibinin modulates lipid homeostasis and inhibits nuclear factor kappa B activation in experimental nonalcoholic steatohepatitis. Transl Res 2012;159(6):477–86. https://doi.org/10.1016/j.trsl.2011.12.003.

[93]

Ni X, Wang H. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD). Am J Transl Res 2016;8(2):1073–81.

[94]

Li J, Wang RF, Yang L, et al. Structure and biological action on cardiovascular systems of saponins from Panax notoginseng. Zhongguo Zhongyao Zazhi 2015;40(17):3480–7.

[95]

Liu X, Yu JL, Liu M, et al. Research progress of bioactivity of steroidal saponins in recent ten years. Zhongguo Zhongyao Zazhi 2015;40(13):2518–23.

[96]

Zhang ZY, Wu JP, Gao BB, et al. Two new 28-nor-oleanane-type triterpene saponins from roots of Camellia oleifera and their cytotoxic activity. J Asian Nat Prod Res 2016;18(7):669–76. https://doi.org/10.1080/10286020.2016.1158167.

[97]

Yin LH, Xu LN, Wang XN, et al. An economical method for isolation of dioscin from Dioscorea nipponica makino by HSCCC coupled with ELSD, and a computer-aided UNIFAC mathematical model. Chromatographia 2010;71(1):15–23. https://doi.org/10.1365/s10337-009-1407-2.

[98]

Li M, Han X, Yu B. Synthesis of monomethylated dioscin derivatives and their antitumor activities. Carbohydr Res 2003;338(2):117–21. https://doi.org/10.1016/s0008-6215(02)00443-3.

[99]

Liu M, Xu L, Yin L, et al. Potent effects of dioscin against obesity in mice. Sci Rep 2015;5:7973. https://doi.org/10.1038/srep07973.

[100]

Shen L, Xiong Y, Wang DQH, et al. Ginsenoside Rb1 reduces fatty liver by activating AMP-activated protein kinase in obese rats. J Lipid Res 2013;54(5):1430–8. https://doi.org/10.1194/jlr.M035907.

[101]

Yao H, Qiao YJ, Zhao YL, et al. Herbal medicines and nonalcoholic fatty liver disease. World J Gastroenterol 2016;22(30):6890–905. https://doi.org/10.3748/wjg.v22.i30.6890.

[102]

Charytoniuk T, Drygalski K, Konstantynowicz-Nowicka K, et al. Alternative treatment methods attenuate the development of NAFLD: a review of resveratrol molecular mechanisms and clinical trials. Nutrition 2017;34:108–17. https://doi.org/10.1016/j.nut.2016.09.001.

[103]

Poulsen MM, Vestergaard PF, Clasen BF, et al. High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 2013;62(4):1186–95. https://doi.org/10.2337/db12-0975.

[104]

Yoshino J, Conte C, Fontana L, et al. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metabol 2012;16(5):658–64. https://doi.org/10.1016/j.cmet.2012.09.015.

[105]

Madak-Erdogan Z, Gong P, Zhao YC, et al. Dietary licorice root supplementation reduces diet-induced weight gain, lipid deposition, and hepatic steatosis in ovariectomized mice without stimulating reproductive tissues and mammary gland. Mol Nutr Food Res 2016;60(2):369–80. https://doi.org/10.1002/mnfr.201500445.

[106]

Wang C, Duan X, Sun X, et al. Protective effects of glycyrrhizic acid from edible botanical Glycyrrhiza glabra against non-alcoholic steatohepatitis in mice. Food Funct 2016;7(9):3716–23. https://doi.org/10.1039/c6fo00773b.

[107]

Hajiaghamohammadi AA, Ziaee A, Samimi R. The efficacy of licorice root extract in decreasing transaminase activities in non-alcoholic fatty liver disease: a randomized controlled clinical trial. Phytother Res 2012;26(9):1381–4. https://doi.org/10.1002/ptr.3728.

[108]

Chen T, Zhong FJ, Hong YM, et al. Effect of Trifolium pratense extract on methionine-choline-deficient diet-induced steatohepatitis in C57BL/6 mice. Chin J Nat Med 2014;12(3):194–8. https://doi.org/10.1016/S1875-5364(14)60032-7.

[109]

Weidner C, Wowro SJ, Rousseau M, et al. Antidiabetic effects of chamomile flowers extract in obese mice through transcriptional stimulation of nutrient sensors of the peroxisome proliferator-activated receptor (PPAR) family. PLoS One 2013;8(11):e80335. https://doi.org/10.1371/journal.pone.0080335.

[110]

Miranda-Henriques MS, Diniz MD, Araújo MS. Ginseng, green tea or fibrate: valid options for nonalcoholic steatohepatitis prevention? Arq Gastroenterol 2014;51(3):255–60. https://doi.org/10.1590/s0004-28032014000300016.

[111]

Hong SH, Suk KT, Choi SH, et al. Anti-oxidant and natural killer cell activity of Korean red ginseng (Panax ginseng) and urushiol (Rhus vernicifera Stokes) on non-alcoholic fatty liver disease of rat. Food Chem Toxicol 2013;55:586–91. https://doi.org/10.1016/j.fct.2013.01.022.

[112]

Hong M, Lee YH, Kim S, et al. Anti-inflammatory and antifatigue effect of Korean Red Ginseng in patients with nonalcoholic fatty liver disease. J Ginseng Res 2016;40(3):203–10. https://doi.org/10.1016/j.jgr.2015.07.006.

[113]

Kumari P, Shirumalla RK, Bhalla V, et al. New emerging aspect of herbal extracts for the treatment of osteoporosis: overview. Curr Rheumatol Rev 2024;20(4):361–72. https://doi.org/10.2174/0115733971273691231121131455.

[114]

Sethiya NK, Ghiloria N, Srivastav A, et al. Therapeutic potential of myricetin in the treatment of neurological, neuropsychiatric, and neurodegenerative disorders. CNS Neurol Disord: Drug Targets 2024;23(7):865–82. https://doi.org/10.2174/1871527322666230718105358.

[115]

Singh P, Alam MS, Arif M, et al. An update on natural bioactive components of traditional preparations for the treatment of nephrolithiasis; a review. J Nephropharmacol 2024;13(2):e10545. https://doi.org/10.34172/npj.2024.10545.

[116]

Chen XJ, Liu WJ, Wen ML, et al. Ameliorative effects of Compound K and ginsenoside Rh1 on non-alcoholic fatty liver disease in rats. Sci Rep 2017;7:41144. https://doi.org/10.1038/srep41144.

[117]

Yuan D, Xiang T, Huo Y, et al. Preventive effects of total saponins of Panax japonicus on fatty liver fibrosis in mice. Arch Med Sci 2018;14(2):396–406. https://doi.org/10.5114/aoms.2016.63260.

[118]

Rafie R, Hosseini SA, Hajiani E, et al. Effect of ginger powder supplementation in patients with non-alcoholic fatty liver disease: a randomized clinical trial. Clin Exp Gastroenterol 2020;13:35–45. https://doi.org/10.2147/CEG.S234698.

[119]

Ge Y, Zhang Y, Li R, et al. Berberine regulated Gck, G6pc, Pck1 and Srebp-1c expression and activated AMP-activated protein kinase in primary rat hepatocytes. Int J Biol Sci 2011;7(5):673–84. https://doi.org/10.7150/ijbs.7.673.

[120]

Koperska A, Wesołek A, Moszak M, et al. Berberine in non-alcoholic fatty liver disease-a review. Nutrients 2022;14(17):3459. https://doi.org/10.3390/nu14173459.

[121]

Guo Y, Sun Q, Wang S, et al. Corydalis saxicola Bunting total alkaloids improve NAFLD by suppressing de novo lipogenesis through the AMPK-SREBP1 axis. J Ethnopharmacol 2024;319(Pt 1):117162. https://doi.org/10.1016/j.jep.2023.117162.

[122]

Mu HN, Zhou Q, Yang RY, et al. Caffeic acid prevents non-alcoholic fatty liver disease induced by a high-fat diet through gut microbiota modulation in mice. Food Res Int 2021;143:110240. https://doi.org/10.1016/j.foodres.2021.110240.

[123]

Perumpail BJ, Li AA, Iqbal U, et al. Potential therapeutic benefits of herbs and supplements in patients with NAFLD. Diseases 2018;6(3):80. https://doi.org/10.3390/diseases6030080.

[124]

Boyraz M, Pirgon Ö, Dündar B, et al. Long-term treatment with n-3 polyunsaturated fatty acids as a monotherapy in children with nonalcoholic fatty liver disease. J Clin Res Pediatr Endocrinol 2015;7(2):121–7. https://doi.org/10.4274/jcrpe.1749.

[125]

Hwang YP, Kim HG, Choi JH, et al. S-allyl cysteine attenuates free fatty acid-induced lipogenesis in human HepG2 cells through activation of the AMP-activated protein kinase-dependent pathway. J Nutr Biochem 2013;24(8):1469–78. https://doi.org/10.1016/j.jnutbio.2012.12.006.

[126]

Li J, Sapper TN, Mah E, et al. Green tea extract treatment reduces NFκB activation in mice with diet-induced nonalcoholic steatohepatitis by lowering TNFR1 and TLR4 expression and ligand availability. J Nutr Biochem 2017;41:34–41. https://doi.org/10.1016/j.jnutbio.2016.12.007.

[127]

Pan MH, Yang G, Li S, et al. Combination of Citrus polymethoxyflavones, green tea polyphenols, and Lychee extracts suppresses obesity and hepatic steatosis in high-fat diet induced obese mice. Mol Nutr Food Res 2017;61(11). https://doi.org/10.1002/mnfr.201601104.

[128]

Jeon SY, Imm JY. Lipase inhibition and cholesterol-lowering activities of laccase-catalyzed catechin polymers. Food Sci Biotechnol 2014;23(5):1703–7. https://doi.org/10.1007/s10068-014-0232-z.

[129]

Jazayeri-Tehrani SA, Rezayat SM, Mansouri S, et al. Nano-curcumin improves glucose indices, lipids, inflammation, and nesfatin in overweight and obese patients with non-alcoholic fatty liver disease (NAFLD):a double-blind randomized placebo-controlled clinical trial. Nutr Metab 2019;16:8. https://doi.org/10.1186/s12986-019-0331-1.

[130]

Jazayeri-Tehrani SA, Rezayat SM, Mansouri S, et al. Efficacy of nanocurcumin supplementation on insulin resistance, lipids, inflammatory factors and nesfatin among obese patients with non-alcoholic fatty liver disease (NAFLD):a trial protocol. BMJ Open 2017;7(7):e016914. https://doi.org/10.1136/bmjopen-2017-016914.

[131]

Wan S, Zhang L, Quan Y, et al. Resveratrol-loaded PLGA nanoparticles: enhanced stability, solubility and bioactivity of resveratrol for non-alcoholic fatty liver disease therapy. R Soc Open Sci 2018;5(11):181457. https://doi.org/10.1098/rsos.181457.

[132]

Parra-Robert M, Casals E, Massana N, et al. Beyond the scavenging of reactive oxygen species (ROS):direct effect of cerium oxide nanoparticles in reducing fatty acids content in an in vitro model of hepatocellular steatosis. Biomolecules 2019;9(9):425. https://doi.org/10.3390/biom9090425.

[133]

Chen C, Jie X, Ou Y, et al. Nanoliposome improves inhibitory effects of naringenin on nonalcoholic fatty liver disease in mice. Nanomedicine 2017;12(15):1791–800. https://doi.org/10.2217/nnm-2017-0119.

[134]

Xue M, Yang MX, Zhang W, et al. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int J Nanomed 2013;4677. https://doi.org/10.2147/ijn.s51262.

iLIVER
Article number: 100131
Cite this article:
Yadav P, Quadri K, Kadian R, et al. New approaches to the treatment of metabolic dysfunction-associated steatotic liver with natural products. iLIVER, 2024, 3(4): 100131. https://doi.org/10.1016/j.iliver.2024.100131

128

Views

0

Crossref

0

Scopus

Altmetrics

Received: 07 August 2024
Revised: 14 October 2024
Accepted: 21 October 2024
Published: 08 November 2024
© 2024 The Author(s). Tsinghua University Press.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return