AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iLIVER Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Arginine methylation modification in the malignant progression of benign and malignant liver diseases

Jie-Zuo HuangaBei-Ning QiaoaDang-Chi LibQiu-Rong Weic( )Zi-Jian Zhangd,e( )
College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612, Charles E. Young Drive East, Los Angeles 90095, CA, USA
Department of Pediatrics, Chibi People’s Hospital, Xianning 437300, China
Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
Show Author Information

Abstract

The role of protein arginine methyltransferases (PRMTs) in benign and malignant liver diseases has garnered considerable attention. PRMTs play a key function in regulating protein methylation modification in diseases such as alcoholic fatty liver disease, metabolic dysfunction–associated steatotic liver disease, viral hepatitis, and hepatocellular carcinoma. This review explores the mechanisms of action of PRMTs in these diseases, with a focus on their effects on cell signaling, transcriptional regulation, cell proliferation, and metabolism. We also discuss potential therapeutic strategies targeting PRMTs and propose future research directions. This review helps deepen the understanding of the important role of arginine methylation modification in the malignant progression of liver diseases and provides guidance for future clinical treatment and drug development.

References

[1]

Lívero FA, Acco A. Molecular basis of alcoholic fatty liver disease: from incidence to treatment. Hepatol Res 2016;46(1):111–23. https://doi.org/10.1111/hepr.12594.

[2]

Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet 2021;397(10290):2212–24. https://doi.org/10.1016/s0140-6736(20)32511-3.

[3]

Lazarus JV, Newsome PN, Francque SM, et al. Reply: a multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2024;79(3):E93–4. https://doi.org/10.1097/HEP.0000000000000696.

[4]

Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol 2023;79(6):1542–56. https://doi.org/10.1016/j.jhep.2023.06.003.

[5]

Odenwald MA, Paul S. Viral hepatitis: past, present, and future. World J Gastroenterol 2022;28(14):1405–29. https://doi.org/10.3748/wjg.v28.i14.1405.

[6]

Yue T, Zhang Q, Cai T, et al. Trends in the disease burden of HBV and HCV infection in China from 1990–2019. Int J Infect Dis 2022;122:476–85. https://doi.org/10.1016/j.ijid.2022.06.017.

[7]

Zhou L, Ng DSC, Yam JC, et al. Post-translational modifications on the retinoblastoma protein. J Biomed Sci 2022;29(1):33. https://doi.org/10.1186/s12929-022-00818-x.

[8]

Wu X, Xu M, Geng M, et al. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Targeted Ther 2023;8(1):220. https://doi.org/10.1038/s41392-023-01439-y.

[9]

Pearce NJ, Arch JRS, Clapham JC, et al. Development of glucose intolerance in male transgenic mice overexpressing human glycogen synthase kinase-3 beta on a muscle-specific promoter. Metabolism 2004;53(10):1322–30. https://doi.org/10.1016/j.metabol.2004.05.008.

[10]

Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol 2019;20(2):102–15. https://doi.org/10.1038/s41580-018-0076-0.

[11]

Blanc RS, Richard S. Arginine methylation: the coming of age. Mol Cell 2017;65(1):8–24. https://doi.org/10.1016/j.molcel.2016.11.003.

[12]

Guccione E, Richard S. The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol 2019;20(10):642–57. https://doi.org/10.1038/s41580-019-0155-x.

[13]

Wolf SS. The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 2009;66(13):2109–21. https://doi.org/10.1007/s00018-009-0010-x.

[14]

Wu Q, Schapira M, Arrowsmith CH, et al. Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov 2021;20(7):509–30. https://doi.org/10.1038/s41573-021-00159-8.

[15]

Zhang Z, Wen H, Peng B, et al. CDKN2A deregulation in fatty liver disease and its accelerative role in the process of lipogenesis. Faseb J 2021;35(4):e21230. https://doi.org/10.1096/fj.202000683R.

[16]

Choi S, Choi D, Lee YK, et al. Depletion of Prmt1 in adipocytes impairs glucose homeostasis in diet-induced obesity. Diabetes 2021;70(8):1664–78. https://doi.org/10.2337/db20-1050.

[17]

Park MJ, Kim DI, Lim SK, et al. Thioredoxin-interacting protein mediates hepatic lipogenesis and inflammation via PRMT1 and PGC-1α regulation in vitro and in vivo. J Hepatol 2014;61(5):1151–7. https://doi.org/10.1016/j.jhep.2014.06.032.

[18]

Guéant JL, Elakoum R, Ziegler O, et al. Nutritional models of foetal programming and nutrigenomic and epigenomic dysregulations of fatty acid metabolism in the liver and heart. Pflügers Archiv 2014;466(5):833–50. https://doi.org/10.1007/s00424-013-1339-4.

[19]

Chandra V, Huang P, Potluri N, et al. Multidomain integration in the structure of the HNF-4α nuclear receptor complex. Nature 2013;495(7441):394–8. https://doi.org/10.1038/nature11966.

[20]

Xu L, Huang Z, Lo TH, et al. Hepatic PRMT1 ameliorates diet-induced hepatic steatosis via induction of PGC1α. Theranostics 2022;12(6):2502–18. https://doi.org/10.7150/thno.63824.

[21]

Ma Y, Liu S, Jun H, et al. A critical role for hepatic protein arginine methyltransferase 1 isoform 2 in glycemic control. Faseb J 2020;34(11):14863–77. https://doi.org/10.1096/fj.202001061R.

[22]

Zhu Q, Wang D, Liang F, et al. Protein arginine methyltransferase PRMT1 promotes adipogenesis by modulating transcription factors C/EBPβ and PPARγ. J Biol Chem 2022;298(9):102309. https://doi.org/10.1016/j.jbc.2022.102309.

[23]

Tikhanovich I, Zhao J, Olson J, et al. Protein arginine methyltransferase 1 modulates innate immune responses through regulation of peroxisome proliferator-activated receptor γ-dependent macrophage differentiation. J Biol Chem 2017;292(17):6882–94. https://doi.org/10.1074/jbc.M117.778761.

[24]

Iwasaki H, Kovacic JC, Olive M, et al. Disruption of protein arginine N-methyltransferase 2 regulates leptin signaling and produces leanness in vivo through loss of STAT3 methylation. Circ Res 2010;107(8):992–1001. https://doi.org/10.1161/CIRCRESAHA.110.225326.

[25]

Hoekstra M, Nahon JE, de Jong LM, et al. Inhibition of PRMT3 activity reduces hepatic steatosis without altering atherosclerosis susceptibility in apoE knockout mice. Biochim Biophys Acta, Mol Basis Dis 2019;1865(6):1402–9. https://doi.org/10.1016/j.bbadis.2019.02.012.

[26]

de Jong LM, Zhang Z, den Hartog Y, et al. PRMT3 inhibitor SGC707 reduces triglyceride levels and induces pruritus in Western-type diet-fed LDL receptor knockout mice. Sci Rep 2022;12(1):483. https://doi.org/10.1038/s41598-021-04524-w.

[27]

Nahon JE, Groeneveldt C, Geerling JJ, et al. Inhibition of protein arginine methyltransferase 3 activity selectively impairs liver X receptor-driven transcription of hepatic lipogenic genes in vivo. Br J Pharmacol 2018;175(15):3175–83. https://doi.org/10.1111/bph.14361.

[28]

Kim DI, Park MJ, Lim SK, et al. PRMT3 regulates hepatic lipogenesis through direct interaction with LXRα. Diabetes 2015;64(1):60–71. https://doi.org/10.2337/db13-1394.

[29]

Zhang Y, Verwilligen RAF, de Boer M, et al. PRMT4 inhibitor TP-064 impacts both inflammatory and metabolic processes without changing the susceptibility for early atherosclerotic lesions in male apolipoprotein E knockout mice. Atherosclerosis 2021;338:23–9. https://doi.org/10.1016/j.atherosclerosis.2021.11.001.

[30]

Huang L, Liu J, Zhang XO, et al. Inhibition of protein arginine methyltransferase 5 enhances hepatic mitochondrial biogenesis. J Biol Chem 2018;293(28):10884–94. https://doi.org/10.1074/jbc.RA118.002377.

[31]

Hou A, Xu X, Zhang Y, et al. Excessive fatty acids activate PRMT5/MDM2/Drosha pathway to regulate miRNA biogenesis and lipid metabolism. Liver Int 2024;44(7):1634–50.

[32]

Han HS, Choi BH, Jang SY, et al. Regulation of hepatic lipogenesis by asymmetric arginine methylation. Metabolism 2024;157:155938. https://doi.org/10.1016/j.metabol.2024.155938.

[33]

Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 2017;14(1):32–42. https://doi.org/10.1038/nrgastro.2016.147.

[34]

Choi D, Oh KJ, Han HS, et al. Protein arginine methyltransferase 1 regulates hepatic glucose production in a FoxO 1-dependent manner. Hepatology 2012;56(4):1546–56. https://doi.org/10.1002/hep.25809.

[35]

Han HS, Jung CY, Yoon YS, et al. Arginine methylation of CRTC2 is critical in the transcriptional control of hepatic glucose metabolism. Sci Signal 2014;7(314):ra19. https://doi.org/10.1126/scisignal.2004479.

[36]

Yan FZ, Qian H, Liu F, et al. Inhibition of protein arginine methyltransferase 1 alleviates liver fibrosis by attenuating the activation of hepatic stellate cells in mice. Faseb J 2022;36(9):e22489. https://doi.org/10.1096/fj.202200238R.

[37]

Zhong Y, Zhang J, Yu H, et al. Characterization and sub-cellular localization of GalNAc-binding proteins isolated from human hepatic stellate cells. Biochem Biophys Res Commun 2015;468(4):906–12. https://doi.org/10.1016/j.bbrc.2015.11.055.

[38]

Yang M, Lin X, Segers F, et al. OXR1A, a coactivator of PRMT5 regulating histone arginine methylation. Cell Rep 2020;30(12):4165. https://doi.org/10.1016/j.celrep.2020.02.063.78.e7.

[39]

Mookerjee RP, Malaki M, Davies NA, et al. Increasing dimethylarginine levels are associated with adverse clinical outcome in severe alcoholic hepatitis. Hepatology 2007;45(1):62–71. https://doi.org/10.1002/hep.21491.

[40]

Wang W, Zhong GZ, Long KB, et al. Silencing miR-181b-5p upregulates PIAS1 to repress oxidative stress and inflammatory response in rats with alcoholic fatty liver disease through inhibiting PRMT1. Int Immunopharm 2021;101(Pt B):108151. https://doi.org/10.1016/j.intimp.2021.108151.

[41]

Zhao J, Adams A, Roberts B, et al. Protein arginine methyl transferase 1- and Jumonji C domain-containing protein 6-dependent arginine methylation regulate hepatocyte nuclear factor 4 alpha expression and hepatocyte proliferation in mice. Hepatology 2018;67(3):1109–26. https://doi.org/10.1002/hep.29587.

[42]

Zhao J, O'Neil M, Vittal A, et al. PRMT1-dependent macrophage IL-6 production is required for alcohol-induced HCC progression. Gene Expr 2019;19(2):137–50. https://doi.org/10.3727/105221618X15372014086197.

[43]

Slagle BL, Bouchard MJ. Role of HBx in hepatitis B virus persistence and its therapeutic implications. Curr Opin Virol 2018;30:32–8. https://doi.org/10.1016/j.coviro.2018.01.007.

[44]

Benhenda S, Ducroux A, Rivière L, et al. Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription. J Virol 2013;87(8):4360–71. https://doi.org/10.1128/JVI.02574-12.

[45]

Zhang W, Chen J, Wu M, et al. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation. Hepatology 2017;66(2):398–415. https://doi.org/10.1002/hep.29133.

[46]

Yuan H, Zhao L, Yuan Y, et al. HBx represses WDR77 to enhance HBV replication by DDB1-mediated WDR77 degradation in the liver. Theranostics 2021;11(17):8362–78. https://doi.org/10.7150/thno.57531.

[47]

Deng W, Ai J, Zhang W, et al. Arginine methylation of HSPA8 by PRMT9 inhibits ferroptosis to accelerate hepatitis B virus-associated hepatocellular carcinoma progression. J Transl Med 2023;21(1):625. https://doi.org/10.1186/s12967-023-04408-9.

[48]

Duong FHT, Christen V, Lin S, et al. Hepatitis C virus-induced up-regulation of protein phosphatase 2A inhibits histone modification and DNA damage repair. Hepatology 2010;51(3):741–51. https://doi.org/10.1002/hep.23388.

[49]

Duong FHT, Christen V, Berke JM, et al. Upregulation of protein phosphatase 2Ac by hepatitis C virus modulates NS3 helicase activity through inhibition of protein arginine methyltransferase 1. J Virol 2005;79(24):15342–50. https://doi.org/10.1128/JVI.79.24.15342-15350.2005.

[50]

Christen V, Duong F, Bernsmeier C, et al. Inhibition of alpha interferon signaling by hepatitis B virus. J Virol 2007;81(1):159–65. https://doi.org/10.1128/JVI.01292-06.

[51]

Xie Y, Zhou R, Lian F, et al. Virtual screening and biological evaluation of novel small molecular inhibitors against protein arginine methyltransferase 1 (PRMT1). Org Biomol Chem 2014;12(47):9665–73. https://doi.org/10.1039/c4ob01591f.

[52]

Gou Q, He S, Zhou Z. Protein arginine N-methyltransferase 1 promotes the proliferation and metastasis of hepatocellular carcinoma cells. Tumour Biol 2017;39(2):1010428317691419. https://doi.org/10.1177/1010428317691419.

[53]

Li B, Liu L, Li X, et al. MiR-503 suppresses metastasis of hepatocellular carcinoma cell by targeting PRMT1. Biochem Biophys Res Commun 2015;464(4):982–7. https://doi.org/10.1016/j.bbrc.2015.06.169.

[54]

Ryu JW, Kim SK, Son MY, et al. Novel prognostic marker PRMT1 regulates cell growth via downregulation of CDKN1A in HCC. Oncotarget 2017;8(70):115444–55. https://doi.org/10.18632/oncotarget.23296.

[55]

Tang M, Yang M, Wu G, et al. Epigenetic induction of mitochondrial fission is required for maintenance of liver cancer-initiating cells. Cancer Res 2021;81(14):3835–48. https://doi.org/10.1158/0008-5472.CAN-21-0436.

[56]

Wang K, Luo L, Fu S, et al. PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma. Nat Commun 2023;14(1):1011. https://doi.org/10.1038/s41467-023-36708-5.

[57]

Yan J, Li KX, Yu L, et al. PRMT1 integrates immune microenvironment and fatty acid metabolism response in progression of hepatocellular carcinoma. J Hepatocell Carcinoma 2024;11:15–27. https://doi.org/10.2147/JHC.S443130.

[58]

Wei H, Liu Y, Min J, et al. Protein arginine methyltransferase 1 promotes epithelial-mesenchymal transition via TGF-β1/Smad pathway in hepatic carcinoma cells. Neoplasma 2019;66(6):918–29. https://doi.org/10.4149/neo_2018_181226N999.

[59]

Zhang XP, Jiang YB, Zhong CQ, et al. PRMT1 promoted HCC growth and metastasis in vitro and in vivo via activating the STAT3 signalling pathway. Cell Physiol Biochem 2018;47(4):1643–54. https://doi.org/10.1159/000490983.

[60]

Hu G, Yan C, Xie P, et al. PRMT2 accelerates tumorigenesis of hepatocellular carcinoma by activating Bcl 2 via histone H3R8 methylation. Exp Cell Res 2020;394(2):112152. https://doi.org/10.1016/j.yexcr.2020.112152.

[61]

Lei Y, Han P, Chen Y, et al. Protein arginine methyltransferase 3 promotes glycolysis and hepatocellular carcinoma growth by enhancing arginine methylation of lactate dehydrogenase A. Clin Transl Med 2022;12(1):e686. https://doi.org/10.1002/ctm2.686.

[62]

Shi Y, Niu Y, Yuan Y, et al. PRMT3-mediated arginine methylation of IGF2BP1 promotes oxaliplatin resistance in liver cancer. Nat Commun 2023;14(1):1932. https://doi.org/10.1038/s41467-023-37542-5.

[63]

Du P, Luo K, Li G, et al. PRMT4 promotes hepatocellular carcinoma progression by activating AKT/mTOR signaling and indicates poor prognosis. Int J Med Sci 2021;18(15):3588–98. https://doi.org/10.7150/ijms.62467.

[64]

Yin S, Liu L, Ball LE, et al. CDK5-PRMT1-WDR24 signaling cascade promotes mTORC1 signaling and tumor growth. Cell Rep 2023;42(4):112316. https://doi.org/10.1016/j.celrep.2023.112316.

[65]

Abumustafa W, Castven D, Sharif-Askari FS, et al. PRMT5 mediated HIF1α signaling and ras-related nuclear protein as promising biomarker in hepatocellular carcinoma. Biology 2024;13(4):216. https://doi.org/10.3390/biology13040216.

[66]

Shimizu D, Kanda M, Sugimoto H, et al. The protein arginine methyltransferase 5 promotes malignant phenotype of hepatocellular carcinoma cells and is associated with adverse patient outcomes after curative hepatectomy. Int J Oncol 2017;50(2):381–6. https://doi.org/10.3892/ijo.2017.3833.

[67]

Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol 2017;13(12):710–30. https://doi.org/10.1038/nrendo.2017.91.

[68]

Liu L, Zhao X, Zhao L, et al. Arginine methylation of SREBP1a via PRMT5 promotes de novo lipogenesis and tumor growth. Cancer Res 2016;76(5):1260–72. https://doi.org/10.1158/0008-5472.CAN-15-1766.

[69]

Yuan HF, Zhao M, Zhao LN, et al. PRMT5 confers lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours. Acta Pharmacol Sin 2022;43(9):2373–85. https://doi.org/10.1038/s41401-021-00841-y.

[70]

Yang H, Zhao X, Zhao L, et al. PRMT5 competitively binds to CDK4 to promote G1-S transition upon glucose induction in hepatocellular carcinoma. Oncotarget 2016;7(44):72131–47. https://doi.org/10.18632/oncotarget.12351.

[71]

Jiang H, Zhu Y, Zhou Z, et al. PRMT5 promotes cell proliferation by inhibiting BTG2 expression via the ERK signaling pathway in hepatocellular carcinoma. Cancer Med 2018;7(3):869–82. https://doi.org/10.1002/cam4.1360.

[72]

Zhang B, Dong S, Li Z, et al. Targeting protein arginine methyltransferase 5 inhibits human hepatocellular carcinoma growth via the downregulation of beta-catenin. J Transl Med 2015;13:349. https://doi.org/10.1186/s12967-015-0721-8.

[73]

Zhu K, Peng Y, Hu J, et al. Metadherin-PRMT5 complex enhances the metastasis of hepatocellular carcinoma through the WNT-β-catenin signaling pathway. Carcinogenesis 2020;41(2):130–8. https://doi.org/10.1093/carcin/bgz065.

[74]

Zhou Z, Chen Z, Zhou Q, et al. SMYD4 monomethylates PRMT5 and forms a positive feedback loop to promote hepatocellular carcinoma progression. Cancer Sci 2024;115(5):1587–601. https://doi.org/10.1111/cas.16139.

[75]

Chan LH, Zhou L, Ng KY, et al. PRMT6 regulates RAS/RAF binding and MEK/ERK-mediated cancer stemness activities in hepatocellular carcinoma through CRAF methylation. Cell Rep 2018;25(3):690–701.e8. https://doi.org/10.1016/j.celrep.2018.09.053.

[76]

Wong TL, Ng KY, Tan KV, et al. CRAF methylation by PRMT6 regulates aerobic glycolysis-driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation. Hepatology 2020;71(4):1279–96. https://doi.org/10.1002/hep.30923.

[77]

Che N, Ng KY, Wong TL, et al. PRMT6 deficiency induces autophagy in hostile microenvironments of hepatocellular carcinoma tumors by regulating BAG5-associated HSC70 stability. Cancer Lett 2021;501:247–62. https://doi.org/10.1016/j.canlet.2020.11.002.

[78]

Shen T, Ni T, Chen J, et al. An enhancer variant at 16q22.1 predisposes to hepatocellular carcinoma via regulating PRMT7 expression. Nat Commun 2022;13(1):1232. https://doi.org/10.1038/s41467-022-28861-0.

[79]

Jiang H, Zhou Z, Jin S, et al. PRMT9 promotes hepatocellular carcinoma invasion and metastasis via activating PI3K/Akt/GSK-3β/Snail signaling. Cancer Sci 2018;109(5):1414–27. https://doi.org/10.1111/cas.13598.

[80]

Ai J, Zhang W, Deng W, et al. A hsa_circ_001726 axis regulated by E2F6 contributes to metastasis of hepatocellular carcinoma. BMC Cancer 2024;24(1):14. https://doi.org/10.1186/s12885-023-11703-7.

[81]

Manabile MA, Hull R, Khanyile R, et al. Alternative splicing events and their clinical significance in colorectal cancer: targeted therapeutic opportunities. Cancers 2023;15(15):3999. https://doi.org/10.3390/cancers15153999.

[82]

Ohno M, Komakine J, Suzuki E, et al. Interleukin enhancer-binding factor 3 functions as a liver receptor homologue-1 co-activator in synergy with the nuclear receptor co-activators PRMT1 and PGC-1α. Biochem J 2011;437(3):531–40. https://doi.org/10.1042/BJ20101793.

[83]

Jarrold J, Davies CC. PRMTs and arginine methylation: cancer's best-kept secret? Trends Mol Med 2019;25(11):993–1009. https://doi.org/10.1016/j.molmed.2019.05.007.

[84]

Engstrom LD, Aranda R, Waters L, et al. MRTX1719 is an MTA-cooperative PRMT5 inhibitor that exhibits synthetic lethality in preclinical models and patients with MTAP-deleted cancer. Cancer Discov 2023;13(11):2412–31. https://doi.org/10.1158/2159-8290.CD-23-0669.

[85]

Fedoriw A, Rajapurkar SR, O'Brien S, et al. Anti-tumor activity of the type Ⅰ PRMT inhibitor, GSK3368715,synergizes with PRMT5 inhibition through MTAP loss. Cancer Cell 2019;36(1):100. https://doi.org/10.1016/j.ccell.2019.05.014.14.e25.

[86]

El-Khoueiry AB, Clarke J, Neff T, et al. Phase 1 study of GSK3368715,a type Ⅰ PRMT inhibitor, in patients with advanced solid tumors. Br J Cancer 2023;129: 309–17. https://doi.org/10.1038/s41416-023-02276-0.

[87]

Cheng D, Yadav N, King RW, et al. Small molecule regulators of protein arginine methyltransferases. J Biol Chem 2004;279(23):23892–9. https://doi.org/10.1074/jbc.M401853200.

[88]

Zhang P, Tao H, Yu L, et al. Developing protein arginine methyltransferase 1 (PRMT1) inhibitor TC-E-5003 as an antitumor drug using INEI drug delivery systems. Drug Deliv 2020;27(1):491–501. https://doi.org/10.1080/10717544.2020.1745327.

[89]

Heinke R, Spannhoff A, Meier R, et al. Virtual screening and biological characterization of novel histone arginine methyltransferase PRMT1 inhibitors. ChemMedChem 2009;4(1):69–77. https://doi.org/10.1002/cmdc.200800301.

[90]

Zhao Z, Zhang J, Ren Y, et al. Discovery of 2, 4-diphenyl-substituted thiazole derivatives as PRMT1 inhibitors and investigation of their anti-cervical cancer effects. Bioorg Med Chem 2023;92:117436. https://doi.org/10.1016/j.bmc.2023.117436.

[91]

Eram MS, Shen Y, Szewczyk M, et al. A potent, selective, and cell-active inhibitor of human type Ⅰ protein arginine methyltransferases. ACS Chem Biol 2016;11(3):772–81. https://doi.org/10.1021/acschembio.5b00839.

[92]

Iyamu ID, Al-Hamashi AA, Huang R. A pan-inhibitor for protein arginine methyltransferase family enzymes. Biomolecules 2021;11(6):854. https://doi.org/10.3390/biom11060854.

[93]

Liu S, Zhang B, Guo H, et al. The antidepressant effects of protein arginine methyltransferase 2 involve neuroinflammation. Neurochem Int 2024;176:105728. https://doi.org/10.1016/j.neuint.2024.105728.

[94]

Ümit Kaniskan H, Szewczyk MM, Yu Z, et al. A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3). Angew Chem Int Ed 2015;54(17):5166–70. https://doi.org/10.1002/anie.201412154.

[95]

Nakayama K, Szewczyk MM, Dela Sena C, et al. TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma. Oncotarget 2018;9(26):18480–93. https://doi.org/10.18632/oncotarget.24883.

[96]

Al-Hamashi AA, Chen D, Deng Y, et al. Discovery of a potent and dual-selective bisubstrate inhibitor for protein arginine methyltransferase 4/5. Acta Pharm Sin B 2021;11(9):2709–18. https://doi.org/10.1016/j.apsb.2020.10.013.

[97]

Shen Y, Szewczyk MM, Eram MS, et al. Discovery of a potent, selective, and cell-active dual inhibitor of protein arginine methyltransferase 4 and protein arginine methyltransferase 6. J Med Chem 2016;59(19):9124–39. https://doi.org/10.1021/acs.jmedchem.6b01033.

[98]

Drew AE, Moradei O, Jacques SL, et al. Identification of a CARM1 inhibitor with potent in vitro and in vivo activity in preclinical models of multiple myeloma. Sci Rep 2017;7(1):17993. https://doi.org/10.1038/s41598-017-18446-z.

[99]

Liu C, Li Y, Liu Z, et al. Structure-based discovery of potent CARM1 inhibitors for colorectal cancer therapy. Eur J Med Chem 2024;269:116288. https://doi.org/10.1016/j.ejmech.2024.116288.

[100]

Chan-Penebre E, Kuplast KG, Majer CR, et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 2015;11(6):432–7. https://doi.org/10.1038/nchembio.1810.

[101]

Bonday ZQ, Cortez GS, Grogan MJ, et al. LLY-283, a potent and selective inhibitor of arginine methyltransferase 5, PRMT5, with antitumor activity. ACS Med Chem Lett 2018;9(7):612–7. https://doi.org/10.1021/acsmedchemlett.8b00014.

[102]

Zhou Z, Feng Z, Hu D, et al. A novel small-molecule antagonizes PRMT5-mediated KLF4 methylation for targeted therapy. EBioMedicine 2019;44:98–111. https://doi.org/10.1016/j.ebiom.2019.05.011.

[103]

Wang X, Qiu T, Wu Y, et al. Arginine methyltransferase PRMT5 methylates and stabilizes KLF5 via decreasing its phosphorylation and ubiquitination to promote basal-like breast cancer. Cell Death Differ 2021;28(10):2931–45. https://doi.org/10.1038/s41418-021-00793-0.

[104]

Zhang Q, Cao J, Zhang Y, et al. Design, synthesis and evaluation of antitumor activity of selective PRMT6 inhibitors. Eur J Med Chem 2023;247:115032. https://doi.org/10.1016/j.ejmech.2022.115032.

[105]

Mitchell LH, Drew AE, Ribich SA, et al. Aryl pyrazoles as potent inhibitors of arginine methyltransferases: identification of the first PRMT6 tool compound. ACS Med Chem Lett 2015;6(6):655–9. https://doi.org/10.1021/acsmedchemlett.5b00071.

[106]

Szewczyk MM, Ishikawa Y, Organ S, et al. Pharmacological inhibition of PRMT7 links arginine monomethylation to the cellular stress response. Nat Commun 2020;11:2396. https://doi.org/10.1038/s41467-020-16271-z.

[107]
Liu C, Zou W, Nie D, et al. Loss of PRMT7 reprograms Glycine metabolism to selectively eradicate leukemia stem cells in CML. Cell Metabol 2022;34(6):818. https://doi.org/10.1016/j.cmet.2022.04.004. 35.e7.
[108]

Xu J, Richard S. Cellular pathways influenced by protein arginine methylation: implications for cancer. Mol Cell 2021;81(21):4357–68. https://doi.org/10.1016/j.molcel.2021.09.011.

[109]

Fulton MD, Brown T, Zheng YG. Mechanisms and inhibitors of histone arginine methylation. Chem Rec 2018;18(12):1792–807. https://doi.org/10.1002/tcr.201800082.

[110]

Hu H, Qian K, Ho MC, et al. Small molecule inhibitors of protein arginine methyltransferases. Expet Opin Invest Drugs 2016;25(3):335–58. https://doi.org/10.1517/13543784.2016.1144747.

iLIVER
Article number: 100124
Cite this article:
Huang J-Z, Qiao B-N, Li D-C, et al. Arginine methylation modification in the malignant progression of benign and malignant liver diseases. iLIVER, 2024, 3(4): 100124. https://doi.org/10.1016/j.iliver.2024.100124

78

Views

0

Crossref

0

Scopus

Altmetrics

Received: 08 July 2024
Revised: 25 August 2024
Accepted: 29 August 2024
Published: 30 September 2024
© 2024 The Author(s). Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return