Journal Home > Volume 1 , Issue 4

Magnetic particle imaging (MPI) is an emerging technique to visualize the spatial distribution of superparamagnetic iron oxide with high temporal–spatial resolution, high sensitivity, unlimited image depth, and true quantitative information. MPI is based on the nonlinear response of superparamagnetic iron oxide in an alternating magnetic field without tissue background noise. It is a promising imaging modality for various applications, including vascular imaging, cell tracking, tumor imaging, and catheter navigation. Many applications of liver imaging could be improved or created with MPI. In this review, we cover the principle and construction of MPI, we evaluate the features and advantages of MPI with relation to its own rationale and via comparison with other imaging modalities, and we review MPI liver imaging applications with a view toward assisting hepatic researchers in drawing inspiration.


menu
Abstract
Full text
Outline
About this article

Advances in magnetic particle imaging and perspectives on liver imaging

Show Author's information Wei Lia,b,1Xiaohua Jiab,1Lin Yinb,c,d,1Zhiyun YangaHui Huib,c,dJianlin LieWenhui HuangaJie Tianb,c,f,g( )Shuixing Zhanga( )
Department of Radiology, The First Affiliated Hospital, Jinan University, No.613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100080, China
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100083, China
Zhuhai Precision Medical Center, Zhuhai People's Hospital, Affiliated with Jinan University, Zhuhai, 519000, China

1 These authors contributed equally to this work.

Abstract

Magnetic particle imaging (MPI) is an emerging technique to visualize the spatial distribution of superparamagnetic iron oxide with high temporal–spatial resolution, high sensitivity, unlimited image depth, and true quantitative information. MPI is based on the nonlinear response of superparamagnetic iron oxide in an alternating magnetic field without tissue background noise. It is a promising imaging modality for various applications, including vascular imaging, cell tracking, tumor imaging, and catheter navigation. Many applications of liver imaging could be improved or created with MPI. In this review, we cover the principle and construction of MPI, we evaluate the features and advantages of MPI with relation to its own rationale and via comparison with other imaging modalities, and we review MPI liver imaging applications with a view toward assisting hepatic researchers in drawing inspiration.

Keywords: Magnetic particle imaging, Liver imaging, SPIO

References(96)

[1]

Debette S, Schilling S, Duperron M-G, et al. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and metaanalysis. JAMA Neurol 2019;76: 81–94. https://doi.org/10.1001/jamaneurol.2018.3122.

[2]

Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA 2020;323: 548–60. https://doi.org/10.1001/jama.2019.22360.

[3]

Perera M, Papa N, Roberts M, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer—updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol 2020;77: 403–17. https://doi.org/10.1016/j.eururo.2019.01.049.

[4]

Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018;391: 1301–14. https://doi.org/10.1016/S0140-6736(18)30010-2.

[5]
Buzug TM. Computed tomography. In: Kramme R, Hoffmann K-P, Pozos RS, editors. Springer handbook of medical technology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 311–42.
[6]

Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005;435: 1214–7. https://doi.org/10.1038/nature03808.

[7]

Bulte JWM. Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Adv Drug Deliv Rev 2019;138: 293–301. https://doi.org/10.1016/j.addr.2018.12.007.

[8]

Talebloo N, Gudi M, Robertson N, et al. Magnetic particle imaging: current applications in biomedical research. J Magn Reson Imag 2020;51: 1659–68. https://doi.org/10.1002/jmri.26875.

[9]

Billings C, Langley M, Warrington G, et al. Magnetic particle imaging: current and future applications, magnetic nanoparticle synthesis methods and safety measures. Int J Mol Sci 2021;22: 7651. https://doi.org/10.3390/ijms22147651.

[10]

Vogel P, Rückert MA, Kampf T, et al. Superspeed bolus visualization for vascular magnetic particle imaging. IEEE Trans Med Imag 2020;39: 2133–9. https://doi.org/10.1109/TMI.2020.2965724.

[11]

Tong W, Hui H, Shang W, et al. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Theranostics 2021;11: 506–21. https://doi.org/10.7150/thno.49812.

[12]

Yu EY, Bishop M, Zheng B, et al. Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett 2017;17: 1648–54. https://doi.org/10.1021/acs.nanolett.6b04865.

[13]

Tay ZW, Chandrasekharan P, Chiu-Lam A, et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano 2018;12: 3699–713. https://doi.org/10.1021/acsnano.8b00893.

[14]

Haegele J, Rahmer J, Gleich B, et al. Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology 2012;265: 933–8. https://doi.org/10.1148/radiol.12120424.

[15]

Weizenecker J, Gleich B, Borgert J. Magnetic particle imaging using a field free line. J Phys D Appl Phys 2008;41: 105009. https://doi.org/10.1088/0022-3727/41/10/105009.

[16]

Jia G, Huang L, Wang Z, et al. Gradient-based pulsed excitation and relaxation encoding in magnetic particle imaging. IEEE Trans Med Imag 2022. In press, https://doi.org/10.1109/TMI.2022.3193219.

[17]

Gräfe K, Gladiss Av, Bringout G, et al. 2D images recorded with a single-sided magnetic particle imaging scanner. IEEE Trans Med Imag 2016;35: 1056–65. https://doi.org/10.1109/TMI.2015.2507187.

[18]

Vogel P, Rückert MA, Kemp SJ, et al. Micro-traveling wave magnetic particle imaging—sub-millimeter resolution with optimized tracer LS-008. IEEE Trans Magn 2019;55: 1–7. https://doi.org/10.1109/TMAG.2019.2924198.

[19]

Vogel P, Rückert MA, Klauer P, et al. Superspeed traveling wave magnetic particle imaging. IEEE Trans Magn 2015;51: 1–3. https://doi.org/10.1109/TMAG.2014.2322897.

[20]

Graeser M, Thieben F, Szwargulski P, et al. Human-sized magnetic particle imaging for brain applications. Nat Commun 2019;10: 1936. https://doi.org/10.1038/s41467-019-09704-x.

[21]

Shang Y, Liu J, Zhang L, et al. Deep learning for improving the spatial resolution of magnetic particle imaging. Phys Med Biol 2022;67: 125012. https://doi.org/10.1088/1361-6560/ac6e24.

[22]

Shen Y, Hu C, Zhang P, et al. A novel software framework for magnetic particle imaging reconstruction. Int J Imag Syst Technol 2022;32: 1119–32. https://doi.org/10.1002/ima.22707.

[23]

Shasha C, Krishnan KM. Nonequilibrium dynamics of magnetic nanoparticles with applications in biomedicine. Adv Mater 2021;33: 1904131. https://doi.org/10.1002/adma.201904131.

[24]

Panagiotopoulos N, Duschka RL, Ahlborg M, et al. Magnetic particle imaging: current developments and future directions. Int J Nanomed 2015;10. https://doi.org/10.2147/ijn.S70488.

[25]

Wu LC, Zhang Y, Steinberg G, et al. A review of magnetic particle imaging and perspectives on neuroimaging. Am J Neuroradiol 2019;40: 206–12. https://doi.org/10.3174/ajnr.A5896.

[26]

Lu C, Han L, Wang J, et al. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev 2021;50: 8102–46. https://doi.org/10.1039/D0CS00260G.

[27]

Buzug TM, Bringout G, Erbe M, et al. Magnetic particle imaging: Introduction to imaging and hardware realization. Z Med Phys 2012;22: 323–34. https://doi.org/10.1016/j.zemedi.2012.07.004.

[28]

Goodwill PW, Conolly SM. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imag 2010;29: 1851–9. https://doi.org/10.1109/TMI.2010.2052284.

[29]

Goodwill PW, Conolly SM. Multidimensional X-space magnetic particle imaging. IEEE Trans Med Imag 2011;30: 1581–90. https://doi.org/10.1109/TMI.2011.2125982.

[30]

Arami H, Teeman E, Troksa A, et al. Tomographic magnetic particle imaging of cancer targeted nanoparticles. Nanoscale 2017;9: 18723–30. https://doi.org/10.1039/C7NR05502A.

[31]

Tay ZW, Savliwala S, Hensley DW, et al. Superferromagnetic nanoparticles enable order-of-magnitude resolution & sensitivity gain in magnetic particle imaging. Small Methods 2021;5: 2100796. https://doi.org/10.1002/smtd.202100796.

[32]
Güngör A, Askin B, Soydan DA, et al. Deep learned super resolution of system matrices for magnetic particle imaging. In: 2021 43rd annual international conference of the IEEE engineering in medicine & biology society (EMBC). IEEE; 2021. p. 3749–52. https://doi.org/10.1109/EMBC46164.2021.9630601.
[33]

Franke J, Baxan N, Lehr H, et al. Hybrid MPI-MRI system for dual-modal in situ cardiovascular assessments of real-time 3D blood flow quantification—a pre-clinical in vivo feasibility investigation. IEEE Trans Med Imag 2020;39: 4335–45. https://doi.org/10.1109/TMI.2020.3017160.

[34]

Song G, Kenney M, Chen Y-S, et al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nature Biomedical Engineering 2020;4: 325–34. https://doi.org/10.1038/s41551-019-0506-0.

[35]

Wang Q, Ma X, Liao H, et al. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano 2020;14: 2053–62. https://doi.org/10.1021/acsnano.9b08660.

[36]

Paysen H, Loewa N, Weber K, et al. Imaging and quantification of magnetic nanoparticles: comparison of magnetic resonance imaging and magnetic particle imaging. J Magn Magn Mater 2019;475: 382–8. https://doi.org/10.1016/j.jmmm.2018.10.082.

[37]

Song G, Chen M, Zhang Y, et al. Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett 2018; 18: 182–9. https://doi.org/10.1021/acs.nanolett.7b03829.

[38]

Weizenecker J, Gleich B, Rahmer J, et al. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 2009;54: L1–10. https://doi.org/10.1088/0031-9155/54/5/l01.

[39]
Calle D, Navarro T. Basic pulse sequences in magnetic resonance imaging. In: García Martín ML, Lopez Larrubia P, editors. Preclinical MRI: methods and protocols. New York, NY: Springer New York; 2018. p. 21–37. http://doi.org/10.1007/978-1-4939-7531-0_2.
[40]

Lu C, Zhang C, Wang P, et al. Light-free generation of singlet oxygen through manganese-thiophene nanosystems for pH-responsive chemiluminescence imaging and tumor therapy. Chem 2020;6: 2314–34. https://doi.org/10.1016/j.chempr.2020.06.024.

[41]

Cheng X, Sun R, Yin L, et al. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv Mater 2017;29: 1604894. https://doi.org/10.1002/adma.201604894.

[42]

Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target 2018;26: 420–34. https://doi.org/10.1080/1061186X.2017.1419362.

[43]

Zheng B, Vazin T, Goodwill PW, et al. Magnetic Particle Imaging tracks the longterm fate of in vivo neural cell implants with high image contrast. Sci Rep 2015;5: 14055. https://doi.org/10.1038/srep14055.

[44]

Muslu Y, Utkur M, Demirel OB, et al. Calibration-free relaxation-based multi-color magnetic particle imaging. IEEE Trans Med Imag 2018;37: 1920–31. https://doi.org/10.1109/TMI.2018.2818261.

[45]

Utkur M, Muslu Y, Saritas EU. Relaxation-based color magnetic particle imaging for viscosity mapping. Appl Phys Lett 2019;115: 152403. https://doi.org/10.1063/1.5110475.

[46]

Möddel M, Meins C, Dieckhoff J, et al. Viscosity quantification using multi-contrast magnetic particle imaging. New J Phys 2018;20: 083001. https://doi.org/10.1088/1367-2630/aad44b.

[47]

Salamon J, Dieckhoff J, Kaul MG, et al. Visualization of spatial and temporal temperature distributions with magnetic particle imaging for liver tumor ablation therapy. Sci Rep 2020;10: 7480. https://doi.org/10.1038/s41598-020-64280-1.

[48]

Healy S, Bakuzis AF, Goodwill PW, et al. Clinical magnetic hyperthermia requires integrated magnetic particle imaging. WIREs Nanomedicine and Nanobiotechnology 2022;14: e1779. https://doi.org/10.1002/wnan.1779.

[49]

Nothnagel N, Rahmer J, Gleich B, et al. Steering of magnetic devices with a magnetic particle imaging system. IEEE Trans Biomed Eng 2016;63: 2286–93. https://doi.org/10.1109/TBME.2016.2524070.

[50]

Rahmer J, Wirtz D, Bontus C, et al. Interactive magnetic catheter steering with 3-D real-time feedback using multi-color magnetic particle imaging. IEEE Trans Med Imag 2017;36: 1449–56. https://doi.org/10.1109/TMI.2017.2679099.

[51]

Zhu X, Li J, Peng P, et al. Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite. Nano Lett 2019;19: 6725–33. https://doi.org/10.1021/acs.nanolett.9b01202.

[52]

Knopp T, Gdaniec N, Möddel M. Magnetic particle imaging: from proof of principle to preclinical applications. Phys Med Biol 2017;62: R124–78. https://doi.org/10.1088/1361-6560/aa6c99.

[53]

Kherlopian AR, Song T, Duan Q, et al. A review of imaging techniques for systems biology. BMC Syst Biol 2008;2: 74. https://doi.org/10.1186/1752-0509-2-74.

[54]

Cox B, Beard P. Super-resolution ultrasound. Nature 2015;527: 451–2. https://doi.org/10.1038/527451a.

[55]

Wang Y, Shi L, Ye Z, et al. Reactive oxygen correlated chemiluminescent imaging of a semiconducting polymer nanoplatform for monitoring chemodynamic therapy. Nano Lett 2020;20: 176–83. https://doi.org/10.1021/acs.nanolett.9b03556.

[56]

Yin B, Wang Y, Zhang C, et al. Oxygen-embedded quinoidal acene based semiconducting chromophore nanoprobe for amplified photoacoustic imaging and photothermal therapy. Anal Chem 2019;91: 15275–83. https://doi.org/10.1021/acs.analchem.9b04429.

[57]

Song G, Liang C, Gong H, et al. Core–shell MnSe@Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Adv Mater 2015;27: 6110–7. https://doi.org/10.1002/adma.201503006.

[58]

Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2002;2: 11–8. https://doi.org/10.1038/nrc701.

[59]

James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012;92: 897–965. https://doi.org/10.1152/physrev.00049.2010.

[60]

Semelka RC, Helmberger TKG. Contrast Agents for MR Imaging of the Liver, Radiology 2001;218: 27–38. https://doi.org/10.1148/radiology.218.1.r01ja2427.

[61]

Stark DD, Weissleder R, Elizondo G, et al. Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 1988;168: 297–301. https://doi.org/10.1148/radiology.168.2.3393649.

[62]

Dadfar SM, Roemhild K, Drude NI, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 2019;138: 302–25. https://doi.org/10.1016/j.addr.2019.01.005.

[63]

Kiessling F, Mertens ME, Grimm J, et al. Nanoparticles for imaging: top or flop? Radiology 2014;273: 10–28. https://doi.org/10.1148/radiol.14131520.

[64]

Luciani A, Parouchev A, Smirnov P, et al. In vivo imaging of transplanted hepatocytes with a 1.5-T clinical MRI system–initial experience in mice. Eur Radiol 2008;18: 59–69. https://doi.org/10.1007/s00330-007-0750-7.

[65]

Zhang H, Deng L, Liu H, et al. Enhanced fluorescence/magnetic resonance dual imaging and gene therapy of liver cancer using cationized amylose nanoprobe. Mater Today Bio 2022;13: 100220. https://doi.org/10.1016/j.mtbio.2022.100220.

[66]

Fortuin AS, Brüggemann R, van der Linden J, et al. Ultra-small superparamagnetic iron oxides for metastatic lymph node detection: back on the block. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10: e1471. https://doi.org/10.1002/wnan.1471.

[67]

Tanimoto A, Kuribayashi S. Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma. Eur J Radiol 2006;58: 200–16. https://doi.org/10.1016/j.ejrad.2005.11.040.

[68]

Santoro L, Grazioli L, Filippone A, et al. Resovist enhanced MR imaging of the liver: does quantitative assessment help in focal lesion classification and characterization? J Magn Reson Imag 2009;30: 1012–20. https://doi.org/10.1002/jmri.21937.

[69]

Kim YK, Kwak HS, Kim CS, et al. Hepatocellular carcinoma in patients with chronic liver disease: comparison of SPIO-enhanced MR imaging and 16-detector row CT. Radiology 2006;238: 531–41. https://doi.org/10.1148/radiol.2381042193.

[70]

Saritas EU, Goodwill PW, Croft LR, et al. Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson 2013;229: 116–26. https://doi.org/10.1016/j.jmr.2012.11.029.

[71]

Dieckhoff J, Kaul MG, Mummert T, et al. In vivo liver visualizations with magnetic particle imaging based on the calibration measurement approach. Phys Med Biol 2017;62: 3470–82. https://doi.org/10.1088/1361-6560/aa562d.

[72]

Meng L, Ma X, Jiang S, et al. High-efficiency fluorescent and magnetic multimodal probe for long-term monitoring and deep penetration imaging of tumors. J Mater Chem B 2019;7: 5345–51. https://doi.org/10.1039/c9tb00638a.

[73]

Du Y, Liu X, Liang Q, et al. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett 2019;19: 3618–26. https://doi.org/10.1021/acs.nanolett.9b00630.

[74]

Jiang Z, Han X, Du Y, et al. Mixed metal metal-organic frameworks derived carbon supporting ZnFe(2)O(4)/C for high-performance magnetic particle imaging. Nano Lett 2021;21: 2730–7. https://doi.org/10.1021/acs.nanolett.0c04455.

[75]

Khandhar AP, Keselman P, Kemp SJ, et al. Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale 2017;9: 1299–306. https://doi.org/10.1039/c6nr08468k.

[76]

Arami H, Khandhar AP, Tomitaka A, et al. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials 2015; 52: 251–61. https://doi.org/10.1016/j.biomaterials.2015.02.040.

[77]

Goodwill PW, Scott GC, Stang PP, et al. Narrowband magnetic particle imaging. IEEE Trans Med Imag 2009;28: 1231–7. https://doi.org/10.1109/TMI.2009.2013849.

[78]

Goodwill PW, Konkle JJ, Zheng B, et al. Projection x-space magnetic particle imaging. IEEE Trans Med Imag 2012;31: 1076–85. https://doi.org/10.1109/TMI.2012.2185247.

[79]

Yu EY, Chandrasekharan P, Berzon R, et al. Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a murine model. ACS Nano 2017;11: 12067–76. https://doi.org/10.1021/acsnano.7b04844.

[80]

Zheng B, Von See MP, Yu E, et al. Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics 2016;6: 291–301. https://doi.org/10.7150/thno.13728.

[81]

Wang P, Goodwill PW, Pandit P, et al. Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models. Quant Imag Med Surg 2018;8: 114–22. https://doi.org/10.21037/qims.2018.02.06.

[82]

Dieckhoff J, Kaul MG, Mummert T, et al. Magnetic Particle Imaging of liver tumors in small animal models. International Journal on Magnetic Particle Imaging 2017;3. https://doi.org/10.18416/ijmpi.2017.1707003.

[83]

Nichols JW, Bae YH. EPR: evidence and fallacy. J Contr Release 2014;190: 451–64. https://doi.org/10.1016/j.jconrel.2014.03.057.

[84]

Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46: 6387–92.

[85]

Zhang XH, Liang BL, Huang SQ. [Correlation between SPIO-enhanced magnetic resonance imaging (MRI) and histological grading in hepatocellular carcinoma]. Ai Zheng 2003;22: 734–8.

[86]

LeGout JD, Bolan CW, Bowman AW, et al. Focal nodular hyperplasia and focal nodular hyperplasia-like lesions. Radiographics 2022;42: 1043–61. https://doi.org/10.1148/rg.210156.

[87]

Li YW, Chen ZG, Wang JC, et al. Superparamagnetic iron oxide-enhanced magnetic resonance imaging for focal hepatic lesions: systematic review and metaanalysis. World J Gastroenterol 2015;21: 4334–44. https://doi.org/10.3748/wjg.v21.i14.4334.

[88]

Macarini L, Milillo P, Cascavilla A, et al. MR characterisation of dysplastic nodules and hepatocarcinoma in the cirrhotic liver with hepatospecific superparamagnetic contrast agents: pathological correlation in explanted livers. Radiol Med 2009;114: 1267–82. https://doi.org/10.1007/s11547-009-0464-9.

[89]

Lucidarme O, Baleston F, Cadi M, et al. Non-invasive detection of liver fibrosis: is superparamagnetic iron oxide particle-enhanced MR imaging a contributive technique? Eur Radiol 2003;13: 467–74. https://doi.org/10.1007/s00330-002-1667-9.

[90]

Elizondo G, Weissleder R, Stark DD, et al. Hepatic cirrhosis and hepatitis: MR imaging enhanced with superparamagnetic iron oxide. Radiology 1990;174: 797–801. https://doi.org/10.1148/radiology.174.3.2305063.

[91]

Zhou IY, Catalano OA, Caravan P. Advances in functional and molecular MRI technologies in chronic liver diseases. J Hepatol 2020;73: 1241–54. https://doi.org/10.1016/j.jhep.2020.06.020.

[92]

Kaul MG, Mummert T, Jung C, et al. In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with Resovist. Phys Med Biol 2017;62: 3454–69. https://doi.org/10.1088/1361-6560/aa5780.

[93]

Orendorff R, Peck AJ, Zheng B, et al. First in vivo traumatic brain injury imaging via magnetic particle imaging. Phys Med Biol 2017;62: 3501–9. https://doi.org/10.1088/1361-6560/aa52ad.

[94]

Utkur M, Saritas EU. Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation. Med Phys 2022;49: 2590–601. https://doi.org/10.1002/mp.15509.

[95]

Bennett JE, Dolin R, Blaser MJ. Mandell, douglas, and bennett's principles and practice of infectious diseases E-book. Elsevier Health Sciences; 2019.

[96]

Sugimoto K, Moriyasu F, Oshiro H, et al. Clinical utilization of shear wave dispersion imaging in diffuse liver disease. Ultrasonography 2020;39:3–10. https://doi.org/10.14366/usg.19031.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 August 2022
Revised: 08 October 2022
Accepted: 18 October 2022
Published: 08 November 2022
Issue date: December 2022

Copyright

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Tsinghua University Press.

Acknowledgements

The authors would like to acknowledge the instrumental and technical support of Multimodal Biomedical Imaging Experimental Platform, Institute of Automation, Chinese Academy of Sciences.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return