Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The cardiac troponin complex (cTn) is a regulatory component of sarcomere. cTn consists of three subunits: cardiac troponin C (cTnC), which confers Ca2+ sensitivity to muscle; cTnI, which inhibits the interaction of cross-bridge of myosin with thin filament during diastole; and cTnT, which has multiple roles in sarcomere, such as promoting the link between the cTnI-cTnC complex and tropomyosin within the thin filament and influencing Ca2+ sensitivity of cTn and force development during contraction. Conditions that interfere with interactions within cTn and/or other thin filament proteins can be key factors in the regulation of cardiac contraction. These conditions include alterations in myofilament Ca2+ sensitivity, direct changes in cTn function, and triggering downstream events that lead to adverse cardiac remodeling and impairment of heart function. This review describes gene expression and post-translational modifications of cTn as well as the conditions that can adversely affect the delicate balance among the components of cTn, thereby promoting contractile dysfunction.
Spudich JA. The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol. 2001;2(5):387–392.
Fabiato A, Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol. 1978;276:233–255.
Thomson E, Ferreira-Cerca S, Hurt E. Eukaryotic ribosome biogenesis at a glance. J Cell Sci. 2013;126(Pt 21):4815–4821.
Ebashi S. Calcium binding activity of vesicular relaxing factor. J Chir. 1961;82:236–244.
Papadaki M, Marston SB. The importance of intrinsically disordered segments of cardiac troponin in modulating function by phosphorylation and disease-causing mutations. Front Physiol. 2016;7:508.
Ringer S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol. 1883;4(1):29–42.3.
Ramirez-Correa GA, Jin W, Wang Z, et al. O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function. Circ Res. 2008;103(12):1354–1358.
Kuo IY, Ehrlich BE. Signaling in muscle contraction. Cold Spring Harbor Perspect Biol. 2015;7(2):a006023.
Rall JA. Calcium and muscle contraction: the triumph and tragedy of Lewis Victor Heilbrunn. Adv Physiol Educ. 2019;43(4):476–485.
Cheng Y, Lindert S, Kekenes-Huskey P, et al. Computational studies of the effect of the S23D/S24D troponin Ⅰ mutation on cardiac troponin structural dynamics. Biophys J. 2014;107(7):1675–1685.
Parvatiyar MS, Landstrom AP, Figueiredo-Freitas C, Potter JD, Ackerman MJ, Pinto JR. A mutation in TNNC1-encoded cardiac troponin C, TNNC1-A31S, predisposes to hypertrophic cardiomyopathy and ventricular fibrillation. J Biol Chem. 2012;287(38):31845–31855.
Streng AS, de Boer D, van der Velden J, van Dieijen-Visser MP, Wodzig WKWH. Posttranslational modifications of cardiac troponin T: an overview. J Mol Cell Cardiol. 2013;63:47–56.
Zamora JE, Papadaki M, Messer AE, Marston SB, Gould IR. Troponin structure: its modulation by Ca2+ and phosphorylation studied by molecular dynamics simulations. Phys Chem Chem Phys. 2016;18(30):20691–20707.
Bremel RD, Weber A. Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol. 1972;238(82):97–101.
Annemarie Weber Franzini-Armstrong C. Ca2+ and the regulation of muscle contraction. Trends Cell Biol. 1998;8(6):251–253.
Murray JM, Weber A. The cooperative action of muscle proteins. Sci Am. 1974;230(2):58–71.
Weber A, Murray JM. Molecular control mechanisms in muscle contraction. Physiol Rev. 1973;53(3):612–673.
Geeves MA, Lehrer SS. Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit. Biophys J. 1994;67(1):273–282.
Martin-Garrido A, Biesiadecki BJ, Salhi HE, et al. Monophosphorylation of cardiac troponin-Ⅰ at Ser-23/24 is sufficient to regulate cardiac myofibrillar Ca2+ sensitivity and calpain-induced proteolysis. J Biol Chem. 2018;293(22):8588–8599.
Fujino N, Shimizu M, Ino H, et al. A novel mutation Lys273Glu in the cardiac troponin T gene shows high degree of penetrance and transition from hypertrophic to dilated cardiomyopathy. Am J Cardiol. 2002;89(1):29–33.
Lehrer SS, Geeves MA. The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol. 1998;277(5):1081–1089.
Mijailovich SM, Li X, Griffiths RH, Geeves MA. The Hill model for binding myosin S1 to regulated actin is not equivalent to the McKillop-Geeves model. J Mol Biol. 2012;417(1–2):112–128.
Moss RL, Razumova M, Fitzsimons DP. Myosin crossbridge activation of cardiac thin filaments: implications for myocardial function in health and disease. Circ Res. 2004;94(10):1290–1300.
Risi CM, Pepper I, Belknap B, et al. The structure of the native cardiac thin filament at systolic Ca2+ levels. Proc Natl Acad Sci U S A. 2021;118(13):e2024288118.
Tobacman LS. Troponin revealed: Uncovering the structure of the thin filament on-off switch in striated muscle. Biophys J. 2021;120(1):1–9.
Yamada Y, Namba K, Fujii T. Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nat Commun. 2020;11(1):153.
Szczesna D, Zhang R, Zhao J, Jones M, Guzman G, Potter JD. Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy. J Biol Chem. 2000;275(1):624–630.
Wang Z, Raunser S. Structural biochemistry of muscle contraction. Annu Rev Biochem. 2023;92:411–433.
Pavadai E, Rynkiewicz MJ, Ghosh A, Lehman W. Docking troponin T onto the tropomyosin overlapping domain of thin filaments. Biophys J. 2020;118(2):325–336.
Herrmann J, Haude M, Lerman A, et al. Abnormal coronary flow velocity reserve after coronary intervention is associated with cardiac marker elevation. Circulation. 2001;103(19):2339–2345.
Kleinbongard P, Heusch G. A fresh look at coronary microembolization. Nat Rev Cardiol. 2022;19(4):265–280.
Quast C, Kober F, Becker K, et al. Multiparametric MRI identifies subtle adaptations for demarcation of disease transition in murine aortic valve stenosis. Basic Res Cardiol. 2022;117(1):29.
Liu X, Li M, Chen Z, et al. Mitochondrial calpain-1 activates NLRP3 inflammasome by cleaving ATP5A1 and inducing mitochondrial ROS in CVB3-induced myocarditis. Basic Res Cardiol. 2022;117(1):40.
Thielmann M, Kottenberg E, Kleinbongard P, et al. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet. 2013;382(9892):597–604.
Ho CY, Charron P, Richard P, Girolami F, Van Spaendonck-Zwarts KY, Pinto Y. Genetic advances in sarcomeric cardiomyopathies: state of the art. Cardiovasc Res. 2015;105(4):397–408.
Kimura A. Molecular genetics and pathogenesis of cardiomyopathy. J Hum Genet. 2016;61(1):41–50.
Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD. Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res. 1991;69(5):1226–1233.
Hinken AC, Solaro RJ. A dominant role of cardiac molecular motors in the intrinsic regulation of ventricular ejection and relaxation. Physiology. 2007;22:73–80.
Katrukha IA. Human cardiac troponin complex. Structure and functions. Biochemistry. 2013;78(13):1447–1465.
Reinoso TR, Landim-Vieira M, Shi Y, et al. A comprehensive guide to genetic variants and post-translational modifications of cardiac troponin C. J Muscle Res Cell Motil. 2021;42(2):323–342.
Marston S, Zamora JE. Troponin structure and function: a view of recent progress. J Muscle Res Cell Motil. 2020;41(1):71–89.
Hunkeler NM, Kullman J, Murphy AM. Troponin Ⅰ isoform expression in human heart. Circ Res. 1991;69(5):1409–1414.
Saggin L, Gorza L, Ausoni S, Schiaffino S. Troponin Ⅰ switching in the developing heart. J Biol Chem. 1989;264(27):16299–16302.
Sasse S, Brand NJ, Kyprianou P, et al. Troponin Ⅰ gene expression during human cardiac development and in end-stage heart failure. Circ Res. 1993;72(5):932–938.
Huang X, Pi Y, Lee KJ, et al. Cardiac troponin Ⅰ gene knockout: a mouse model of myocardial troponin Ⅰ deficiency. Circ Res. 1999;84(1):1–8.
McConnell BK, Moravec CS, Bond M. Troponin Ⅰ phosphorylation and myofilament calcium sensitivity during decompensated cardiac hypertrophy. Am J Physiol. 1998;274(2):H385–H396.
Yang B, Zhao H, Dong R. MiR-449 improves cardiac function by regulating HDAC1 and cTnI. Eur Rev Med Pharmacol Sci. 2020;24(24):12827–12835.
Pan B, Xu ZW, Xu Y, et al. Diastolic dysfunction and cardiac troponin Ⅰ decrease in aging hearts. Arch Biochem Biophys. 2016;603:20–28.
Pan B, Quan J, Liu L, et al. Epigallocatechin gallate reverses cTnI-low expression-induced age-related heart diastolic dysfunction through histone acetylation modification. J Cell Mol Med. 2017;21(10):2481–2490.
van Rooij E, Quiat D, Johnson BA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17(5):662–673.
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–579.
Villar-Palasi C, Kumon A. Purification and properties of dog cardiac troponin T kinase. J Biol Chem. 1981;256(14):7409–7415.
Cimiotti D, Fujita-Becker S, Möhner D, et al. Infantile restrictive cardiomyopathy: cTnI-R170G/W impair the interplay of sarcomeric proteins and the integrity of thin filaments. PLoS One. 2020;15(3):e0229227.
Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000;80(2):853–924.
Pinto JR, Parvatiyar MS, Jones MA, Liang J, Potter JD. A troponin T mutation that causes infantile restrictive cardiomyopathy increases Ca2+ sensitivity of force development and impairs the inhibitory properties of troponin. J Biol Chem. 2008;283(4):2156–2166.
Lehman W, Pavadai E, Rynkiewicz MJ. C-terminal troponin-Ⅰ residues trap tropomyosin in the muscle thin filament blocked-state. Biochem Biophys Res Commun. 2021;551:27–32.
Pearlstone JR, Smillie LB. The interaction of rabbit skeletal muscle troponin-T fragments with troponin-Ⅰ. Can J Biochem Cell Biol. 1985;63(3):212–218.
Oda T, Yanagisawa H, Wakabayashi T. Cryo-EM structures of cardiac thin filaments reveal the 3D architecture of troponin. J Struct Biol. 2020;209(3):107450.
Miura M, Hasegawa T, Matsumoto A, et al. Effect of transient elevation of glucose on contractile properties in non-diabetic rat cardiac muscle. Heart Ves. 2021;36(4):568–576.
McKillop DF, Geeves MA. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J. 1993;65(2):693–701.
Kiani FA, Lehman W, Fischer S, Rynkiewicz MJ. Spontaneous transitions of actin-bound tropomyosin toward blocked and closed states. J Gen Physiol. 2019;151(1):4–8.
Lehman W. Switching muscles on and off in steps: the McKillop-geeves three-state model of muscle regulation. Biophys J. 2017;112(12):2459–2466.
Malnic B, Farah CS, Reinach FC. Regulatory properties of the NH2- and COOH-terminal domains of troponin T. ATPase activation and binding to troponin Ⅰ and troponin C. J Biol Chem. 1998;273(17):10594–10601.
Solaro RJ, Kobayashi T. Protein phosphorylation and signal transduction in cardiac thin filaments. J Biol Chem. 2011;286(12):9935–9940.
Biesiadecki BJ, Westfall MV. Troponin Ⅰ modulation of cardiac performance: plasticity in the survival switch. Arch Biochem Biophys. 2019;664:9–14.
Yasuda SI, Coutu P, Sadayappan S, Robbins J, Metzger JM. Cardiac transgenic and gene transfer strategies converge to support an important role for troponin Ⅰ in regulating relaxation in cardiac myocytes. Circ Res. 2007;101(4):377–386.
Nixon BR, Thawornkaiwong A, Jin J, et al. AMP-activated protein kinase phosphorylates cardiac troponin Ⅰ at Ser-150 to increase myofilament calcium sensitivity and blunt PKA-dependent function. J Biol Chem. 2012;287(23):19136–19147.
Zhang R, Zhao J, Mandveno A, Potter JD. Cardiac troponin Ⅰ phosphorylation increases the rate of cardiac muscle relaxation. Circ Res. 1995;76(6):1028–1035.
Dong WJ, Jayasundar JJ, An J, Xing J, Cheung HC. Effects of PKA phosphorylation of cardiac troponin Ⅰ and strong crossbridge on conformational transitions of the N-domain of cardiac troponin C in regulated thin filaments. Biochemistry. 2007;46(34):9752–9761.
Takimoto E, Soergel DG, Janssen PML, Stull LB, Kass DA, Murphy AM. Frequency- and afterload-dependent cardiac modulation in vivo by troponin Ⅰ with constitutively active protein kinase A phosphorylation sites. Circ Res. 2004;94(4):496–504.
Robertson SP, Johnson JD, Holroyde MJ, Kranias EG, Potter JD, Solaro RJ. The effect of troponin Ⅰ phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J Biol Chem. 1982;257(1):260–263.
Baryshnikova OK, Robertson IM, Mercier P, Sykes BD. The dilated cardiomyopathy G159D mutation in cardiac troponin C weakens the anchoring interaction with troponin Ⅰ. Biochemistry. 2008;47(41):10950–10960.
Burkart EM, Sumandea MP, Kobayashi T, et al. Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin Ⅰ differentially depress myofilament tension and shortening velocity. J Biol Chem. 2003;278(13):11265–11272.
Sakthivel S, Finley NL, Rosevear PR, et al. In vivo and in vitro analysis of cardiac troponin Ⅰ phosphorylation. J Biol Chem. 2005;280(1):703–714.
Kirk JA, MacGowan GA, Evans C, et al. Left ventricular and myocardial function in mice expressing constitutively pseudophosphorylated cardiac troponin Ⅰ. Circ Res. 2009;105(12):1232–1239.
Tobacman LS. Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol. 1996;58:447–481.
Manning EP, Tardiff JC, Schwartz SD. Molecular effects of familial hypertrophic cardiomyopathy-related mutations in the TNT1 domain of cTnT. J Mol Biol. 2012;421(1):54–66.
Gomes AV, Guzman G, Zhao J, Potter JD. Cardiac troponin T isoforms affect the Ca2+ sensitivity and inhibition of force development. Insights into the role of troponin T isoforms in the heart. J Biol Chem. 2002;277(38):35341–35349.
Gomes AV, Potter JD. Cellular and molecular aspects of familial hypertrophic cardiomyopathy caused by mutations in the cardiac troponin Ⅰ gene. Mol Cell Biochem. 2004;263(1–2):99–114.
Ragusa R, Di Molfetta A, Del Turco S, et al. Epigenetic regulation of cardiac troponin genes in pediatric patients with heart failure supported by ventricular assist device. Biomedicines. 2021;9(10):1409.
Biesiadecki BJ, Chong SM, Nosek TM, Jin JP. Troponin T core structure and the regulatory NH2-terminal variable region. Biochemistry. 2007;46(5):1368–1379.
Jaquet K, Fukunaga K, Miyamoto E, Meyer HE. A site phosphorylated in bovine cardiac troponin T by cardiac CaM kinase II. Biochim Biophys Acta. 1995;1248(2):193–195.
Sumandea MP, Vahebi S, Sumandea CA, Garcia-Cazarin ML, Staidle J, Homsher E. Impact of cardiac troponin T N-terminal deletion and phosphorylation on myofilament function. Biochemistry. 2009;48(32):7722–7731.
He X, Liu Y, Sharma V, et al. ASK1 associates with troponin T and induces troponin T phosphorylation and contractile dysfunction in cardiomyocytes. Am J Pathol. 2003;163(1):243–251.
Vahebi S, Kobayashi T, Warren CM, de Tombe PP, Solaro RJ. Functional effects of rho-kinase-dependent phosphorylation of specific sites on cardiac troponin. Circ Res. 2005;96(7):740–747.
Pfleiderer P, Sumandea MP, Rybin VO, Wang C, Steinberg SF. Raf-1: a novel cardiac troponin T kinase. J Muscle Res Cell Motil. 2009;30(1–2):67–72.
Sancho Solis R, Ge Y, Walker JW. Single amino acid sequence polymorphisms in rat cardiac troponin revealed by top-down tandem mass spectrometry. J Muscle Res Cell Motil. 2008;29(6–8):203–212.
Keyt LK, Duran JM, Bui QM, et al. Thin filament cardiomyopathies: a review of genetics, disease mechanisms, and emerging therapeutics. Front Cardiovasc Med. 2022;9:972301.
Martin AA, Thompson BR, Hahn D, et al. Cardiac sarcomere signaling in health and disease. Int J Mol Sci. 2022;23(24):16223.
Albury ANJ, Swindle N, Swartz DR, Tikunova SB. Effect of hypertrophic cardiomyopathy-linked troponin C mutations on the response of reconstituted thin filaments to calcium upon troponin Ⅰ phosphorylation. Biochemistry. 2012;51(17):3614–3621.
Martins AS, Parvatiyar MS, Feng HZ, et al. In vivo analysis of troponin C knock-In (A8V) mice: evidence that TNNC1 is a hypertrophic cardiomyopathy susceptibility gene. Circ Cardiovasc Genet. 2015;8(5):653–664.
Dieseldorff Jones KM, Vied C, Valera IC, Chase PB, Parvatiyar MS, Pinto JR. Sexual dimorphism in cardiac transcriptome associated with a troponin C murine model of hypertrophic cardiomyopathy. Physiol Rep. 2020;8(6):e14396.
Deng Y, Schmidtmann A, Redlich A, Westerdorf B, Jaquet K, Thieleczek R. Effects of phosphorylation and mutation R145G on human cardiac troponin Ⅰ function. Biochemistry. 2001;40(48):14593–14602.
Dweck D, Reynaldo DP, Pinto JR, Potter JD. A dilated cardiomyopathy troponin C mutation lowers contractile force by reducing strong myosin-actin binding. J Biol Chem. 2010;285(23):17371–17379.
Kruger M, Zittrich S, Redwood C, et al. Effects of the mutation R145G in human cardiac troponin Ⅰ on the kinetics of the contraction-relaxation cycle in isolated cardiac myofibrils. J Physiol. 2005;564(Pt 2):347–357.
Sorrentino U, Gabbiato I, Canciani C, et al. Homozygous TNNI mutations and severe early onset dilated cardiomyopathy: patient report and review of the literature. Genes. 2023;14(3):748.
Cheng Y, Regnier M. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Arch Biochem Biophys. 2016;601:11–21.
Burton D, Abdulrazzak H, Knott A, et al. Two mutations in troponin Ⅰ that cause hypertrophic cardiomyopathy have contrasting effects on cardiac muscle contractility. Biochem J. 2002;362(Pt 2):443–451.
Gomes AV, Harada K, Potter JD. A mutation in the N-terminus of troponin Ⅰ that is associated with hypertrophic cardiomyopathy affects the Ca2+-sensitivity, phosphorylation kinetics and proteolytic susceptibility of troponin. J Mol Cell Cardiol. 2005;39(5):754–765.
Cheng Y, Rao V, Tu AY, et al. Troponin Ⅰ mutations R146G and R21C alter cardiac troponin function, contractile properties, and modulation by protein kinase A (PKA)-mediated phosphorylation. J Biol Chem. 2015;290(46):27749–27766.
Wang Y, Pinto JR, Solis RS, et al. Generation and functional characterization of knock-in mice harboring the cardiac troponin Ⅰ-R21C mutation associated with hypertrophic cardiomyopathy. J Biol Chem. 2012;287(3):2156–2167.
Psaras Y, Margara F, Cicconet M, et al. CalTrack: high-throughput automated calcium transient analysis in cardiomyocytes. Circ Res. 2021;129(2):326–341.
Biesiadecki BJ, Schneider KL, Yu ZB, Chong SM, Jin JP. An R111C polymorphism in wild Turkey cardiac troponin Ⅰ accompanying the dilated cardiomyopathy-related abnormal splicing variant of cardiac troponin T with potentially compensatory effects. J Biol Chem. 2004;279(14):13825–13832.
Wei H, Jin JP. A dominantly negative mutation in cardiac troponin Ⅰ at the interface with troponin T causes early remodeling in ventricular cardiomyocytes. Am J Physiol Cell Physiol. 2014;307(4):C338–C348.
Barrick SK, Greenberg L, Greenberg MJ. A troponin T variant linked with pediatric dilated cardiomyopathy reduces the coupling of thin filament activation to myosin and calcium binding. Mol Biol Cell. 2021;32(18):1677–1689.
Dai Y, Amenov A, Ignatyeva N, et al. Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients. Sci Rep. 2020;10(1):209.
Luedde M, Ehlermann P, Weichenhan D, et al. Severe familial left ventricular non-compaction cardiomyopathy due to a novel troponin T (TNNT2) mutation. Cardiovasc Res. 2010;86(3):452–460.
Robinson P, Mirza M, Knott A, et al. Alterations in thin filament regulation induced by a human cardiac troponin T mutant that causes dilated cardiomyopathy are distinct from those induced by troponin T mutants that cause hypertrophic cardiomyopathy. J Biol Chem. 2002;277(43):40710–40716.
Schuldt M, Johnston JR, He H, et al. Mutation location of HCM-causing troponin T mutations defines the degree of myofilament dysfunction in human cardiomyocytes. J Mol Cell Cardiol. 2021;150:77–90.
Hershberger RE, Pinto JR, Parks SB, et al. Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy. Circ Cardiovasc Genet. 2009;2(4):306–313.
Li B, Guo Y, Zhan Y, et al. Cardiac overexpression of XIN prevents dilated cardiomyopathy caused by TNNT2 ΔK210 mutation. Front Cell Dev Biol. 2021;9:691749.
Bakkehaug JP, Kildal AB, Engstad ET, et al. Myosin activator omecamtiv mecarbil increases myocardial oxygen consumption and impairs cardiac efficiency mediated by resting myosin ATPase activity. Circ Heart Fail. 2015;8(4):766–775.
Hartzell HC, Glass DB. Phosphorylation of purified cardiac muscle C-protein by purified cAMP-dependent and endogenous Ca2+-calmodulin-dependent protein kinases. J Biol Chem. 1984;259(24):15587–15596.
Rittoo D, Jones A, Lecky B, Neithercut D. Elevation of cardiac troponin T, but not cardiac troponin Ⅰ, in patients with neuromuscular diseases: implications for the diagnosis of myocardial infarction. J Am Coll Cardiol. 2014;63(22):2411–2420.
Xu Z, Feng X, Dong J, et al. Cardiac troponin T and fast skeletal muscle denervation in ageing. J Cachexia Sarcopenia Muscle. 2017;8(5):808–823.
Shiraishi C, Matsumoto A, Ichihara K, et al. RPL3L-containing ribosomes determine translation elongation dynamics required for cardiac function. Nat Commun. 2023;14(1):2131.
Rodriguez R, Harris M, Murphy E, Kennedy LM. OGFOD1 modulates the transcriptional and proteomic landscapes to alter isoproterenol-induced hypertrophy susceptibility. J Mol Cell Cardiol. 2023;179:42–46.
Stoehr A, Kennedy L, Yang Y, et al. The ribosomal prolyl-hydroxylase OGFOD1 decreases during cardiac differentiation and modulates translation and splicing. JCI Insight. 2019;5(13):e128496.
Zakhary DR, Moravec CS, Stewart RW, Bond M. Protein kinase A (PKA)-dependent troponin-Ⅰ phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy. Circulation. 1999;99(4):505–510.
Ward DG, Cornes MP, Trayer IP. Structural consequences of cardiac troponin Ⅰ phosphorylation. J Biol Chem. 2002;277(44):41795–41801.
Biesiadecki BJ, Tachampa K, Yuan C, Jin JP, de Tombe PP, Solaro RJ. Removal of the cardiac troponin Ⅰ N-terminal extension improves cardiac function in aged mice. J Biol Chem. 2010;285(25):19688–19698.
van der Velden J, Papp Z, Zaremba R, et al. Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. Cardiovasc Res. 2003;57(1):37–47.
Belin RJ, Sumandea MP, Sievert GA, et al. Interventricular differences in myofilament function in experimental congestive heart failure. Pflügers Arch Eur J Physiol. 2011;462(6):795–809.
Sabater-Molina M, Pérez-Sánchez I, Hernández Del Rincón JP, Gimeno JR. Genetics of hypertrophic cardiomyopathy: a review of current state. Clin Genet. 2018;93(1):3–14.
Poggesi C, Ho CY. Muscle dysfunction in hypertrophic cardiomyopathy: what is needed to move to translation? J Muscle Res Cell Motil. 2014;35(1):37–45.
Sewry CA, Laitila JM, Wallgren-Pettersson C. Nemaline myopathies: a current view. J Muscle Res Cell Motil. 2019;40(2):111–126.
Tardiff JC, Carrier L, Bers DM, et al. Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc Res. 2015;105(4):457–470.
Messer AE, Marston SB. Investigating the role of uncoupling of troponin Ⅰ phosphorylation from changes in myofibrillar Ca2+-sensitivity in the pathogenesis of cardiomyopathy. Front Physiol. 2014;5:315.
Papadaki M, Vikhorev PG, Marston SB, Messer AE. Uncoupling of myofilament Ca2+ sensitivity from troponin Ⅰ phosphorylation by mutations can be reversed by epigallocatechin-3-gallate. Cardiovasc Res. 2015;108(1):99–110.
Keam SJ. Mavacamten: first approval [published correction appears in Drugs. 2022 Jul;82(11):1235]. Drugs. 2022;82(10):1127–1135.
Harbowy ME, Balentine DA, Davies AP, Cai Y. Tea chemistry. Crit Rev Plant Sci. 1997;16(5):415–480.
Robinson PJ, Patel S, Liu X, et al. Novel potential treatment of familial hypertrophic cardiomyopathy with analogues of the green tea polyphenol epigallocatechin-3-gallate. Biophys J. 2016;110(3):125a.
Tadano N, Du CK, Yumoto F, et al. Biological actions of green tea catechins on cardiac troponin C. Br J Pharmacol. 2010;161(5):1034–1043.
Teerlink JR, Malik FI, Kass DA. Letter by teerlink et al regarding article, “myosin activator omecamtiv mecarbil increases myocardial oxygen consumption and impairs cardiac efficiency mediated by resting myosin ATPase activity”. Circ Heart Fail. 2015;8(6):1141.
Li MX, Robertson IM, Sykes BD. Interaction of cardiac troponin with cardiotonic drugs: a structural perspective. Biochem Biophys Res Commun. 2008;369(1):88–99.
He H, Baka T, Balschi J, et al. Novel small-molecule troponin activator increases cardiac contractile function without negative impact on energetics. Circ Heart Fail. 2022;15(3):e009195.
Kimura A, Harada H, Park JE, et al. Mutations in the cardiac troponin Ⅰ gene associated with hypertrophic cardiomyopathy. Nat Genet. 1997;16(4):379–382.
Mogensen J, Kubo T, Duque M, et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin Ⅰ mutations. J Clin Invest. 2003;111(2):209–216.
Murphy RT, Mogensen J, Shaw A, Kubo T, Hughes S, McKenna WJ. Novel mutation in cardiac troponin Ⅰ in recessive idiopathic dilated cardiomyopathy. Lancet. 2004;363(9406):371–372.
Lu Q, Pan B, Bai H, et al. Intranuclear cardiac troponin Ⅰ plays a functional role in regulating Atp2a2 expression in cardiomyocytes. Genes Dis. 2021;9(6):1689–1700.
Wu H, Lee J, Vincent LG, et al. Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised β-adrenergic signaling in an iPSC model of dilated cardiomyopathy. Cell Stem Cell. 2015;17(1):89–100.
Baryshnikova OK, Li MX, Sykes BD. Modulation of cardiac troponin C function by the cardiac-specific N-terminus of troponin Ⅰ: influence of PKA phosphorylation and involvement in cardiomyopathies. J Mol Biol. 2008;375(3):735–751.
Landstrom AP, Ackerman MJ. Beyond the cardiac myofilament: hypertrophic cardiomyopathy-associated mutations in genes that encode calcium-handling proteins. Curr Mol Med. 2012;12(5):507–518.
Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD. Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol. 2010;48(5):882–892.
Davis J, Wen H, Edwards T, Metzger JM. Allele and species dependent contractile defects by restrictive and hypertrophic cardiomyopathy-linked troponin Ⅰ mutants. J Mol Cell Cardiol. 2008;44(5):891–904.
Kapoor M, Das S, Biswas A, et al. D190Y mutation in C-terminal tail region of TNNI3 gene causing severe form of restrictive cardiomyopathy with mild hypertrophy in an Indian patient. Meta Gene. 2020;26:100777.
Carballo S, Robinson P, Otway R, et al. Identification and functional characterization of cardiac troponin Ⅰ as a novel disease gene in autosomal dominant dilated cardiomyopathy. Circ Res. 2009;105(4):375–382.
Hassoun R, Budde H, Mannherz HG, et al. De novo missense mutations in TNNC1 and TNNI causing severe infantile cardiomyopathy affect myofilament structure and function and are modulated by troponin targeting agents. Int J Mol Sci. 2021;22(17):9625.
Dewan S, McCabe KJ, Regnier M, McCulloch AD. Insights and challenges of multi-scale modeling of sarcomere mechanics in cTn and Tm DCM mutants-genotype to cellular phenotype. Front Physiol. 2017;8:151.
Mirza M, Marston S, Willott R, et al. Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype. J Biol Chem. 2005;280(31):28498–28506.
Van Acker H, De Sutter J, Vandekerckhove K, de Ravel TJL, Verhaaren H, De Backer J. Dilated cardiomyopathy caused by a novel TNNT2 mutation-added value of genetic testing in the correct identification of affected subjects. Int J Cardiol. 2010;144(2):307–309.
Lu QW, Morimoto S, Harada K, et al. Cardiac troponin T mutation R141W found in dilated cardiomyopathy stabilizes the troponin T-tropomyosin interaction and causes a Ca2+ desensitization. J Mol Cell Cardiol. 2003;35(12):1421–1427.
Morales A, Pinto JR, Siegfried JD, et al. Late onset sporadic dilated cardiomyopathy caused by a cardiac troponin T mutation. Clin Transl Sci. 2010;3(5):219–226.
Pioner JM, Vitale G, Gentile F, et al. Genotype-driven pathogenesis of atrial fibrillation in hypertrophic cardiomyopathy: the case of different TNNT2 mutations. Front Physiol. 2022;13:864547.
Hernandez OM, Szczesna-Cordary D, Knollmann BC, et al. F110I and R278C troponin T mutations that cause familial hypertrophic cardiomyopathy affect muscle contraction in transgenic mice and reconstituted human cardiac fibers. J Biol Chem. 2005;280(44):37183–37194.
Ezekian JE, Clippinger SR, Garcia JM, et al. Variant R94C in TNNT2-encoded troponin T predisposes to pediatric restrictive cardiomyopathy and sudden death through impaired thin filament relaxation resulting in myocardial diastolic dysfunction. J Am Heart Assoc. 2020;9(5):e015111.
Wilkinson R, Song W, Smoktunowicz N, Marston S. A dilated cardiomyopathy mutation blunts adrenergic response and induces contractile dysfunction under chronic angiotensin Ⅱ stress. Am J Physiol Heart Circ Physiol. 2015;309(11):H1936–H1946.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).