AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Synergistic effects of alginate oligosaccharide and cyanidin-3-O-glucoside on the amelioration of intestinal barrier function in mice

Jie LiaYuanjie GuoaLiyuan MaaYixiang Liua,b( )Chao ZoucHuiying KuangaBing HanaYingliang XiaoaYanbo Wanga,d
College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, China
Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
Gaoan Public Inspection and Testing Center, Gaoan 330800, China
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Emerging evidence shows that dietary oligosaccharides are important prebiotics that can improve intestinal flora, while dietary polyphenols can act directly on intestinal cells. However, information about their synergistic effects on gut health is still limited. In this study, alginate oligosaccharide (AOS) and cyanidin-3-O-glucoside (C3G) were selected as a common marine plant oligosaccharide and terrestrial plant polyphenol, respectively, to study their effects on intestinal health. The results show that, in comparison to their individual applications, the combination of AOS and C3G (mass ratio, 3:1) displayed a stronger ability to up-regulate the expression of tight junction proteins, while enhanced intestinal epithelial barrier was also observed and levels of mucin-2 and β-defensins were simultaneously increased in the intestinal mucus. Interestingly, the secretion of immunoglobulin A and immune-related cytokines were approximately doubled by the AOS + C3G mixture. In addition, the AOS + C3G mixture was found to be more conducive to the positive transformation of intestinal flora, which stimulated the growth of beneficial bacteria Akkermansia, Lachnospiraceae and Feacalibaculum while inhibiting the growth of harmful bacteria Helicobacter and Turicibacter. The data generated herein thus suggests that dietary oligosaccharides and dietary polyphenols may be more beneficial to intestinal health when applied in combination than their individual effects alone.

References

[1]

Y.L. Zhou, G.L. He, T. Jin, et al., High dietary starch impairs intestinal health and microbiota of largemouth bass, Micropterus salmoides, Aquaculture 534 (2021) 736261. https://doi.org/10.1016/j.aquaculture.2020.736261.

[2]

W. Liu, X. Guo, Y. Chen, et al., Carvacrol promotes intestinal health in Pengze crucian carp, enhancing resistance to Aeromonas hydrophila, Aquacult. Rep. 17 (2020) 100325. https://doi.org/10.1016/j.aqrep.2020.100325.

[3]

M. Shimizu, Multifunctions of dietary polyphenols in the regulation of intestinal inflammation, J. Food Drug Anal. 25(1) (2017) 93-99. https://doi.org/10.1016/j.jfda.2016.12.003.

[4]

S. Ghosh, C.S. Whitley, B. Haribabu, et al., Regulation of intestinal barrier function by microbial metabolites, Cell Mol. Gastroenter. 11(5) (2021) 1463-1482. https://doi.org/10.1016/j.jcmgh.2021.02.007.

[5]

E. Cremonini, E. Daveri, A. Mastaloudis, et al., Anthocyanins protect the gastrointestinal tract from high fat diet-induced alterations in redox signaling, barrier integrity and dysbiosis, Redox Biol. 26 (2019) 101269. https://doi.org/10.1016/j.redox.2019.101269.

[6]

J.C. Espín, A. González-Sarrías, F.A. Tomás-Barberán, The gut microbiota: a key factor in the therapeutic effects of (poly)phenols, Biochem. Pharmacol. 139 (2017) 82-93. https://doi.org/10.1016/j.bcp.2017.04.033.

[7]

J. Uerlings, M. Schroyen, E. Willems, et al., Differential effects of inulin or its fermentation metabolites on gut barrier and immune function of porcine intestinal epithelial cells, J. Funct. Foods. 67 (2020) 103855. https://doi.org/10.1016/j.jff.2020.103855.

[8]

S.I. Mussatto, I.M. Mancilha, Non-digestible oligosaccharides: a review, Carbohyd Polym. 68(3) (2007) 587-597. https://doi.org/10.1016/j.carbpol.2006.12.011.

[9]

C. Vera, A. Illanes, C. Guerrero, Enzymatic production of prebiotic oligosaccharides, Curr. Opin. Food Sci. 37 (2021) 160-170. https://doi.org/10.1016/j.cofs.2020.10.013.

[10]

Gibson G.R., Roberfroid M.B., Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics, J. Nutr. 17(2) (1995) 259-275. https://doi.org/10.1079/NRR200479

[11]

P.D. Cani, S. Possemiers, T. Wiele, et al., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, Gut 58(8) (2009) 1091-1103. https://doi.org/10.1136/gut.2008.165886.

[12]

T.J. Ashaolu, Immune boosting functional foods and their mechanisms: a critical evaluation of probiotics and prebiotics, Biomed. Pharmacother. 130 (2020) 110625. https://doi.org/10.1016/j.biopha.2020.110625.

[13]

J. Wan, J. Zhang, D. Chen, et al., Alterations in intestinal microbiota by alginate oligosaccharide improve intestinal barrier integrity in weaned pigs, J. Funct. Foods. 71 (2020) 104040. https://doi.org/10.1016/j.jff.2020.104040.

[14]

Jue, Wang, Shiyi, et al., The response of colonic mucosa-associated microbiota composition, mucosal immune homeostasis, and barrier function to early-life galactooligosaccharides intervention in suckling piglets, J. Agr. Food Chem. 67(2) (2018) 578-588. https://doi.org/10.1021/acs.jafc.8b05679.

[15]

H. Chen, X. Mao, J. He, et al., Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets, Commun. Agric. Appl. Biol. Sci. 110(10) (2013) 1837-1848. https://doi.org/10.1017/S0007114513001293.

[16]

Z. Fang, B. Bhandari, Encapsulation of polyphenols: a review, Trends Food Sci. Tech. 21(10) (2010) 510-523. https://doi.org/10.1016/j.tifs.2010.08.003.

[17]

R. Dias, C.B. Pereira, R. Pérez-Gregorio, et al., Recent advances on dietary polyphenol's potential roles in Celiac Disease, Trends Food Sci. Tech. 107 (2021) 213-225. https://doi.org/10.1016/j.tifs.2020.10.033.

[18]

T. Suzuki, H. Hara, Role of flavonoids in intestinal tight junction regulation, J. Nutr. Biochem. 22(5) (2011) 401-408. https://doi.org/10.1016/j.jnutbio.2010.08.001.

[19]

T. Suzuki, H. Hara, Quercetin enhances intestinal barrier function through the assembly of zonnula occludens-2, occludin, and claudin-1 and the expression of claudin-4 in Caco-2 Cells, J. Nutr. 5 (2009) 965-974. https://doi.org/10.3945/jn.108.100867.

[20]

W. Kai, X. Jin, Y. Chen, et al., Polyphenol-rich propolis extracts strengthen intestinal barrier function by activating AMPK and ERK signaling, Nutrients 8(5) (2016) 272. https://doi.org/10.3390/nu8050272.

[21]

P.I. Oteiza, C.G. Fraga, D.A. Mills, et al., Flavonoids and the gastrointestinal tract: local and systemic effects, Mol. Aspects Med. 61 (2018) 41-49. https://doi.org/10.1016/j.mam.2018.01.001.

[22]

J.F. Pierre, A.F. Heneghan, R.P. Feliciano, et al., Cranberry proanthocyanidins improve intestinal sIgA during elemental enteral nutrition, JPEN-Parenter Enter. 38(1) (2014) 107-114. https://doi.org/10.1177/0148607112473654.

[23]

J.F. Pierre, A.F. Heneghan, R.P. Feliciano, et al., Cranberry proanthocyanidins improve the gut mucous layer morphology and function in mice receiving elemental enteral nutrition, JPEN-Parenter Enter. 37(3) (2013) 401-409. https://doi.org/10.1177/0148607112463076.

[24]

J. Chen, H. Xie, D. Chen, et al., Chlorogenic acid improves intestinal development via suppressing mucosa inflammation and cell apoptosis in weaned pigs, ACS Omega. 3(2) (2018) 2211-2219. https://doi.org/10.1021/acsomega.7b01971.

[25]

C. Zou, L. Huang, D. Li, Y. et al., Assembling cyanidin-3-O-glucoside by using low-viscosity alginate to improve its in vitro bioaccessibility and in vivo bioavailability, Food Chem. (2021) 129681. https://doi.org/10.1016/j.foodchem.2021.129681.

[26]

S.Z. Xie, B. Liu, H.Y. Ye, et al., Dendrobium huoshanense polysaccharide regionally regulates intestinal mucosal barrier function and intestinal microbiota in mice, Carbohyd. Polym. 206 (2018) 149-162. https://doi.org/10.1016/j.carbpol.2018.11.002.

[27]

Y. Xie, L. Wang, H. Sun, et al., Immunomodulatory, antioxidant and intestinal morphology-regulating activities of alfalfa polysaccharides in mice, Int. J. Biol. Macromol. 133 (2019) 1107-1114. https://doi.org/10.1016/j.ijbiomac.2019.04.144.

[28]

Z.R. Xu, C.H. Hu, M.S. Xia, et al., Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers, Poultry Sci. 82(6) (2003) 1030-1036. https://doi.org/10.1093/ps/82.6.1030.

[29]

J. Mcclemens, J.J. Kim, H. Wang, et al., Lactobacillus rhamnosus ingestion promotes innate host defense in an enteric parasitic infection, Clin. Vaccine Immunol. 20(6) (2013) 818-826. https://doi.org/10.1128/CVI.00047-13.

[30]

W.F. Caspary, Physiology and pathophysiology of intestinal absorption, Am. J. Clin. Nutr. 1 (1992) 299S. https://doi.org/10.1093/ajcn/55.1.299s.

[31]

Y. Peng, Y. Yan, P. Wan, et al., Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo, Food Res. Int. 130 (2020) 108952. https://doi.org/10.1016/j.foodres.2019.108952.

[32]

Q.J. Wu, Y.M. Zhou, Y.N. Wu, et al., The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens, Vet. Immunol. Immunop. 153 (2013) 70-76. https://doi.org/10.1016/j.vetimm.2013.02.006.

[33]

K. Bergstrom, L. Xia, Mucin-type O-glycans and their roles in intestinal homeostasis, Glycobiology 9 (2013) 1026-1037. https://doi.org/10.1093/glycob/cwt045.

[34]

Y.H. Xie, C.Y. Zhang, L.X. Wang, et al., Effects of dietary supplementation of Enterococcus faecium on growth performance, intestinal morphology, and selected microbial populations of piglets, Livest. Sci. 210 (2018) 111-117. https://doi.org/10.1016/j.livsci.2018.02.010.

[35]

Y. Wu, Y., Shao B. Song, et al., Effects of Bacillus coagulans supplementation on the growth performance and gut health of broiler chickens with Clostridium perfringens-induced necrotic enteritis, J. Anim. Sci. Biotechno. 9 (2018) 9. https://doi.org/10.1186/s40104-017-0220-2.

[36]

Q. Wang, X.F. Wang, T. Xing, et al., The combined impact of xylo-oligosaccharides and gamma-irradiated Astragalus polysaccharides on growth performance and intestinal mucosal barrier function of broilers, Poultry Sci. 100 (2021) 100909. https://doi.org/10.1016/j.psj.2020.11.075.

[37]

W. Jin, J. Fei, Q. Xu, et al., Alginic acid oligosaccharide accelerates weaned pig growth through regulating antioxidant capacity, immunity and intestinal development, Rsc Adv. 6 (2016) 87026-87035. https://doi.org/10.1039/C6RA18135J.

[38]

R. Zheng, S. Liu, Z. Yan, et al., Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS, PLoS ONE. 9(6) (2014) e97815. https://doi.org/10.1371/journal.pone.0097815.

[39]

L. Gu, N. Li, J. Gong, et al., Berberine ameliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinemia, J. Infect. Dis. 11 (2011) 1602-1612. https://doi.org/10.1093/infdis/jir147.

[40]

L.H. Maurer, C.B.B. Cazarin, A. Quatrin, et al., Grape peel powder promotes intestinal barrier homeostasis in acute TNBS-colitis: a major role for dietary fiber and fiber-bound polyphenols, Food Res. Int. 123 (2019) 425-439. https://doi.org/10.1016/j.foodres.2019.04.068.

[41]

H. Xiao, H. Li, Y. Wen, et al., Tremella fuciformis polysaccharides ameliorated ulcerative colitis via inhibiting inflammation and enhancing intestinal epithelial barrier function, Int. J. Biol. Macromol. 180 (2021) 633-642. https://doi.org/10.1016/j.ijbiomac.2021.03.083.

[42]

J. Wan, J. Zhang, D. Chen, et al., Alginate oligosaccharide enhances intestinal integrity of weaned pigs through altering intestinal inflammatory responses and antioxidant status, Rsc Adv. 8(24) (2018) 13482-13492. https://doi.org/10.1039/C8RA01943F.

[43]

Q.J. Wu, Y.M. Zhou, Y.N. Wu, et al., The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens, Vet. Immunol. Immunop. 153(1) (2013) 70-76. https://doi.org/10.1016/j.vetimm.2013.02.006.

[44]

W. Ou, H. Hu, P. Yang, et al., Dietary daidzein improved intestinal health of juvenile turbot in terms of intestinal mucosal barrier function and intestinal microbiota, Fish Shellfish Immun. 94 (2019) 132-141. https://doi.org/10.1016/j.fsi.2019.08.059.

[45]

J. Li, L. Zhang, Y. Li, et al., Puerarin improves intestinal barrier function through enhancing goblet cells and mucus barrier, J. Funct. Foods. 75 (2020) 104246. https://doi.org/10.1016/j.jff.2020.104246.

[46]

N. Gill, M. Wlodarska, B.B. Finlay, Roadblocks in the gut: barriers to enteric infection, Cell. Microbiol. 13(5) (2011) 660-669. https://doi.org/10.1111/j.1462-5822.2011.01578.x.

[47]

H. Wang, C. He, Y. Liu, et al., Soluble dietary fiber protects intestinal mucosal barrier by improving intestinal flora in a murine model of sepsis, Biomed. Pharmacother. 129 (2020) 110343. https://doi.org/10.1016/j.biopha.2020.110343.

[48]

E.C. Martens, N. Mareike, M.S. Desai, Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier, Nat. Rev. Microbiol. 16 (2018) 457–470. https://doi.org/10.1038/s41579-018-0036-x.

[49]

J. Feng, L. Wang, Y. Chen, et al., Effects of niacin on intestinal immunity, microbial community and intestinal barrier in weaned piglets during starvation, Int. Immunopharmacol. 95 (2021) 107584. https://doi.org/10.1016/j.intimp.2021.107584.

[50]

L.W. Peterson, D. Artis, Intestinal epithelial cells: regulators of barrier function and immune homeostasis, Nat. Rev. Immunol. 14(3) (2014) 141-153. https://doi.org/10.1038/nri3608.

[51]

J. Peng, Y. Tang, Y. Huang, Gut health: the results of microbial and mucosal immune interactions in pigs, Anim. Nutr. 7(2) (2021) 282-294. https://doi.org/10.1016/j.aninu.2021.01.001.

[52]

O. Pabst, V. Cerovic, M. Hornef, Secretory IgA in the coordination of establishment and maintenance of the microbiota, Trends Immunol. 37(5) (2016) 287-296. https://doi.org/10.1016/j.it.2016.03.002.

[53]

Burns, W.John, Siadat-Pajouh, Majid, Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity, Science. 272(5258) (1996) 104-107. https://doi.org/10.1126/science.272.5258.104.

[54]

H. Iijima, I. Takahashi, H. Kiyono, Mucosal immune network in the gut for the control of infectious diseases, Rev. Med. Virol. 11(2) (2010) 117-133. https://doi.org/10.1002/rmv.307.

[55]

M. Jin, Y. Zhu, D. Shao, et al., Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats, Int. J. Biol. Macromol. 94 (2017) 1-9. https://doi.org/10.1016/j.ijbiomac.2016.09.099.

[56]

S. Zhao, X. Peng, Q.Y. Zhou, et al., Bacillus coagulans 13002 and fructo-oligosaccharides improve the immunity of mice with immunosuppression induced by cyclophosphamide through modulating intestinal-derived and fecal microbiota, Food Res. Int. 140 (2021) 109793. https://doi.org/10.1016/j.foodres.2020.109793.

[57]

S.Z. Hasnain, S. Tauro, I. Das, et al., IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells, Gastroenterology. 144(2) (2013) 357 https://doi.org/10.1053/j.gastro.2012.10.043.

[58]

Q. Yuan, H. Yang, Effects of intraepithelial lymphocyte-derived cytokines on intestinal mucosal barrier function, J. Interf. Cytok. Res. 33(10) (2013) 551-562 https://doi.org/10.1089/jir.2012.0162.

[59]

X. Wang, N. Ota, P. Manzanillo, et al., Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes, Nature. 514(7521) (2014) 237-241. https://doi.org/10.1038/nature13564.

[60]

T. Xia, W. Duan, Z. Zhang, et al., Polyphenol-rich vinegar extract regulates intestinal microbiota and immunity and prevents alcohol-induced inflammation in mice, Food Res. Int. 140 (2021) 110064. https://doi.org/10.1016/j.foodres.2020.110064.

[61]

X. Chen, W. Nie, S. Fan, et al., A polysaccharide from Sargassum fusiforme protects against immunosuppression in cyclophosphamide-treated mice, Carbohyd. Polym. 90(2) (2012) 1114-1119. https://doi.org/10.1016/j.carbpol.2012.06.052.

[62]

H.L. Cui, Y. Chen, S.S. Wang, et al., Isolation, partial characterisation and immunomodulatory activities of polysaccharide from Morchella esculenta, J. Sci. Food Agr. 91(12) (2011) 2180-2185. https://doi.org/10.1002/jsfa.4436.

[63]

Y. Hao, X. Wang, S. Yuan, et al., Flammulina velutipes polysaccharide improves C57BL/6 mice gut health through regulation of intestine microbial metabolic activity, Int. J. Biol. Macromol. 167 (2021) 1308-1318. https://doi.org/10.1016/j.ijbiomac.2020.11.085.

[64]

K. Brown, Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease, Nutrients 4(8) (2012) 1095-1119. https://doi.org/10.3390/nu4081095.

[65]

Y. Yan, Y. Peng, J. Tang, et al., Effects of anthocyanins from the fruit of Lycium ruthenicum Murray on intestinal microbiota, J. Funct. Foods. 48 (2018) 533-541. https://doi.org/10.1016/j.jff.2018.07.053.

[66]

J. Li, T. Wu, N. Li, et al., Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats, Food Funct. 10(1) (2018) 333-343. https://doi.org/10.1039/C8FO01962B.

[67]

A.M. Alves-Santos, C.S.A. Sugizaki, G.C. Lima, et al., Prebiotic effect of dietary polyphenols: a systematic review, J. Funct. Foods. 74 (2020) 104169. https://doi.org/10.1016/j.jff.2020.104169.

[68]

S. Yuksel Sert, A. Ozturk, A. Bektas, et al., Periodontal treatment is more effective in gastric Helicobacter pylori eradication in those patients who maintain good oral hygiene, Int. Dent. J. 69(5) (2019) 392-399. https://doi.org/10.1111/idj.12484.

[69]

D. Ma, A.C. Wang, I. Parikh, et al., Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice, Sci. Rep. 8(1) (2018) 6670. https://doi.org/10.1038/s41598-018-25190-5.

[70]

F. De Filippis, E. Pasolli, D. Ercolini, Newly explored Faecalibacterium diversity is connected to age, lifestyle, geography, and disease, Curr. Biol. 30(24) (2020) 4932-4943.e4. https://doi.org/10.1016/j.cub.2020.09.063.

Food Science and Human Wellness
Pages 2276-2285
Cite this article:
Li J, Guo Y, Ma L, et al. Synergistic effects of alginate oligosaccharide and cyanidin-3-O-glucoside on the amelioration of intestinal barrier function in mice. Food Science and Human Wellness, 2023, 12(6): 2276-2285. https://doi.org/10.1016/j.fshw.2023.03.047

626

Views

30

Downloads

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 08 July 2021
Revised: 08 August 2021
Accepted: 03 September 2021
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return