AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Switch of phosphorylation to O-GlcNAcylation of AhR contributes to vascular oxidative stress induced by benzo[a]pyrene

Rong WangaYun HuangaXiaoruo GanaChenghao FuaYuemin LiaNing ChenaHao XiaHuishan GuoaWei ZhangcYuhong LüaYan Zhangb( )Pin Lüa( )
Cardiovascular Medical Science Center, Department of Cell Biology, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China
Eco-environmental Monitoring Center of Hebei Province, Shijiazhuang 050031, China
Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Benzo[a]pyrene (B[a]P) is a food contaminant toxic for cardiovascular diseases. The nuclear translocation of Arylhydrocarbon receptor (AhR) plays an important role in B[a]P-induced oxidative stress and vascular diseases. We confirmed that B[a]P promoted ROS production in vascular smooth muscle cells (VSMCs) in vitro and in vivo, associated with the nuclear translocation of AhR. It is known that phosphorylation inhibits while dephosphorylation of AhR promotes nuclear translocation of AhR. However, from the posttranslational modification level, the mechanism by which B[a]P activates and regulates the nuclear translocation of AhR is unclear. Co-immunoprecipitation results showed that cytoplasmic AhR was phosphorylated before B[a]P stimulation, and switched to O-GlcNAcylation upon B[a]P 1-h stimulation in VSMCs, suggesting there may be a competitively inhibitory relationship between O-GlcNAcylation and phosphorylation of AhR. Next, siRNAs of O-linked N-acetylglucosamine transferase (OGT), O-GlcNAcase (OGA) and OGA inhibitor PUGNAc were used. SiOGT blocks but siOGA and PUGNAc promote B[a]P -dependent AhR nuclear translocation and oxidative stress. Ser11 may be the competitive binding site for phosphorylation and O-GlcNAcylation of AhR. Phosphorylation-mimic variant inhibits but O-GlcNAcylation of AhR promotes AhR nuclear translocation and oxidative stress. Our findings highlight a new perspective for AhR nuclear translocation regulated by the competitive modification between phosphorylation and O-GlcNAcylation.

References

[1]

Q. Lu, K. Chen, Y. Long, et al., Benzo(a)pyrene degradation by cytochrome P450 hydroxylase and the functional metabolism network of Bacillus thuringiensis, J. Hazard Mater. 366 (2019) 329-337. http://dx.doi.org/10.1016/j.jhazmat.2018.12.004.

[2]

T. Lee, P. Puligundlaet al. C. Mok, Degradation of benzo[a]pyrene on glass slides and in food samples by low-pressure cold plasma, Food Chem. 286 (2019) 624-628. http://dx.doi.org/10.1016/j.foodchem.2019.01.210.

[3]

J.L. Domingo, M. Nadal, Human dietary exposure to polycyclic aromatic hydrocarbons: A review of the scientific literature, Food Chem. Toxicol. 86 (2015) 144-153. http://dx.doi.org/10.1016/j.fct.2015.10.002.

[4]

H. Meng, G. Li, W. Wei, et al., Epigenome-wide DNA methylation signature of benzo[a]pyrene exposure and their mediation roles in benzo[a]pyrene-associated lung cancer development, J. Hazard Mater. 416 (2021) 125839. http://dx.doi.org/10.1016/j.jhazmat.2021.125839.

[5]

H.P. Tzeng, T.H. Yang, C.T. Wu, et al., Benzo[a]pyrene alters vascular function in rat aortas ex vivo and in vivo, Vascul Pharmacol. 121 (2019) 106578. http://dx.doi.org/10.1016/j.vph.2019.106578.

[6]

H.P. Tzeng, K.C. Lan, T.H. Yang, et al., Benzo[a]pyrene activates interleukin-6 induction and suppresses nitric oxide-induced apoptosis in rat vascular smooth muscle cells, PLoS ONE 12 (2017) e0178063. http://dx.doi.org/10.1371/journal.pone.0178063.

[7]

J. Wang, H. Sun, Y. Zhou, et al., Circular RNA microarray expression profile in 3,4-benzopyrene/angiotensin II-induced abdominal aortic aneurysm in mice, J. Cell Biochem. 120 (2019) 10484-10494. http://dx.doi.org/10.1002/jcb.28333.

[8]

C. Fu, Y. Li, H. Xi, et al., Benzo(a)pyrene and cardiovascular diseases: an overview of pre-clinical studies focused on the underlying molecular mechanism, Front. in Nutr. 9 (2022). http://dx.doi.org/10.3389/fnut.2022.978475.

[9]

G.L. Basatemur, H.F. Jorgensen, M.C.H. Clarke, et al., Vascular smooth muscle cells in atherosclerosis, Nat. Rev. Cardiol. 16 (2019) 727-744. http://dx.doi.org/10.1038/s41569-019-0227-9.

[10]

J.K. Kerzeeet al. K.S. Ramos, Activation of c-Ha-ras by benzo(a)pyrene in vascular smooth muscle cells involves redox stress and aryl hydrocarbon receptor, Molecular Pharmacology. 58 (2000) 152-158 http://dx.doi.org/mol.58.1.152.

[11]

G.Z. Wang, L. Zhang, X.C. Zhao, et al., The Aryl hydrocarbon receptor mediates tobacco-induced PD-L1 expression and is associated with response to immunotherapy, Nat. Commun. 10 (2019) 1125. http://dx.doi.org/10.1038/s41467-019-08887-7.

[12]

K. Hezaveh, R.S. Shinde, A. Klötgen, et al., Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity, Immunity. 55 (2022) 324-340.e8. http://dx.doi.org/10.1016/j.immuni.2022.01.006.

[13]

H. Sieset al. D.P. Jones, Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nat Rev Mol Cell Biol. 21 (2020) 363-383. http://dx.doi.org/10.1038/s41580-020-0230-3.

[14]

C.F.A. Vogel, L.S. Van Winkle, C. Esser, et al., The aryl hydrocarbon receptor as a target of environmental stressors-implications for pollution mediated stress and inflammatory responses, Redox Biol. 34 (2020) 101530. http://dx.doi.org/10.1016/j.redox.2020.101530.

[15]

C.E. Yang, Y.N. Wang, M.R. Hua, et al., Aryl hydrocarbon receptor: From pathogenesis to therapeutic targets in aging-related tissue fibrosis, Ageing Res Rev. 79 (2022) 101662. http://dx.doi.org/10.1016/j.arr.2022.101662.

[16]
C.K. Gong, L. Qi, Y.X. Huo, et al., Anticancer effect of Limonin against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice and the inhibition of A549 cell proliferation through apoptotic pathway, Journal of Biochemical and Molecular Toxicology 33 (2019). http://dx.doi.org/ARTNe2237410.1002/jbt.22374.
[17]

J. Ghosh, A.R. Chowdhury, S. Srinivasan, et al., Cigarette smoke toxins-induced mitochondrial dysfunction and pancreatitis involves aryl hydrocarbon receptor mediated Cyp1 gene expression: protective effects of resveratrol, Toxicol Sci. 166 (2018) 428-440. http://dx.doi.org/10.1093/toxsci/kfy206.

[18]

Y. Kanno, Y. Miyama, Y. Takane, et al., Identification of intracellular localization signals and of mechanisms underlining the nucleocytoplasmic shuttling of human aryl hydrocarbon receptor repressor, Biochem Biophys Res Commun. 364 (2007) 1026-1031. http://dx.doi.org/10.1016/j.bbrc.2007.10.140.

[19]

V.D. Kekatpure, A.J. Dannenberg. K. Subbaramaiah, et al.Withdrawal: HDAC6 modulates Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling, J. Biol. Chem. 295 (2020) 297. http://dx.doi.org/10.1074/jbc.W119.012142.

[20]

T. Ikuta, T. Namiki, Y. Fujii-Kuriyama, et al., AhR protein trafficking and function in the skin, Biochem. Pharmacol. 77 (2009) 588-596. http://dx.doi.org/10.1016/j.bcp.2008.10.003.

[21]

T. Ikuta, Y. Kobayashiet al. K. Kawajiri, Phosphorylation of nuclear localization signal inhibits the ligand-dependent nuclear import of aryl hydrocarbon receptor, Biochem Biophys Res Commun. 317 (2004) 545-550. http://dx.doi.org/10.1016/j.bbrc.2004.03.076.

[22]

A.T. Balana, P.M. Levine, T.W. Craven, et al., O-GlcNAc modification of small heat shock proteins enhances their anti-amyloid chaperone activity, Nat. Chem. 13 (2021) 441-450. http://dx.doi.org/10.1038/s41557-021-00648-8.

[23]

J. Ma, C. Houet al. C. Wu, Demystifying the O-GlcNAc code: a systems view, Chem Rev. 122 (2022) 15822-15864. http://dx.doi.org/10.1021/acs.chemrev.1c01006.

[24]

M. Zhao, K. Ren, X. Xiong, et al., Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and Gasdermin C, Immunity. 55 (2022) 623-638.e5. http://dx.doi.org/10.1016/j.immuni.2022.03.009.

[25]

M.R. Bondet al. J.A. Hanover, A little sugar goes a long way: the cell biology of O-GlcNAc, Journal of Cell Biology. 208 (2015) 869-880. http://dx.doi.org/10.1083/jcb.201501101.

[26]

O.O. Mesubi, A.G. Rokita, N. Abrol, et al., Oxidized CaMKII and O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct mechanisms, J. Clin. Invest. 131 (2021). http://dx.doi.org/10.1172/JCI95747.

[27]

S.A.M. van der Laarse, A.C. Leney et al. A.J.R. Heck, Crosstalk between phosphorylation and O-GlcNAcylation: friend or foe, FEBS J. 285 (2018) 3152-3167. http://dx.doi.org/10.1111/febs.14491.

[28]

W. Tan, P. Jiang, W. Zhang, et al., Posttranscriptional regulation of de novo lipogenesis by glucose-induced O-GlcNAcylation, Mol Cell. 81 (2021) 1890-1904. http://dx.doi.org/10.1016/j.molcel.2021.02.009.

[29]

J.Q. Ma, C.M. Liu, Z.H. Qin, et al., Ganoderma applanatum terpenes protect mouse liver against benzo(α)pyren-induced oxidative stress and inflammation, Environ. Toxicol. Pharmacol. 31 (2011) 460-468. https://doi.org/10.1016/j.etap.2011.02.007

[30]

S.Y. Park, S. Phark, M. Lee, et al., Anti-oxidative and anti-inflammatory activities of placental extracts in benzo[a]pyrene-exposed rats, Placenta. 31 (2010) 873-879. http://dx.doi.org/10.1016/j.placenta.2010.07.010.

[31]

P. Lü, Y.J. Yin, P. Kong, et al., SM22α loss contributes to apoptosis of vascular smooth muscle cells via macrophage-derived circRasGEF1B, Oxid. Med. Cell Longev. 2021 (2021) 5564884. http://dx.doi.org/10.1155/2021/5564884.

[32]

L.L. Zhang, J. Chen, R.H. Liang, et al., Synergistic anti-inflammatory effects of lipophilic grape seed proanthocyanidin and camellia oil combination in LPS-stimulated RAW264.7 cells, Antioxidants 11(2) (2022) 289. http://dx.doi.org/10.3390/antiox11020289.

[33]

K. Ji, J. Chen, J. Hu, et al., The protective effect of astragaloside IV against benzo[a]pyrene induced endothelial progenitor cell dysfunction, Life Sci. 132 (2015) 13-19. http://dx.doi.org/10.1016/j.lfs.2015.04.002.

[34]

P. Lü, S.B. Miao, Y.N. Shu, et al., Phosphorylation of smooth muscle 22α facilitates angiotensin II-induced ROS production via activation of the PKCδ-P47phox axis through release of PKCδ and actin dynamics and is associated with hypertrophy and hyperplasia of vascular smooth muscle cells in vitro and in vivo, Circ Res. 111 (2012) 697-707. http://dx.doi.org/10.1161/circresaha.112.272013.

[35]

K.P. Lu, M. Tadesse, M.H. Falahatpisheh, et al., Genomic profiles and predictive biological networks, Physiological Genomics. 13 (2003) 263-275

[36]

C. Esser, A. Rannug, The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology, Pharmacol Rev. 67(2015) 259-279. http://dx.doi.org/10.1124/pr.114.009001.

[37]

M. Furue, M. Takahara, T. Nakahara, et al., Role of AhR/ARNT system in skin homeostasis, Arch Dermatol Res. 306(2014) 769-779. http://dx.doi.org/10.1007/s00403-014-1481-7.

[38]

X. Fang, J. Corrales, C. Thornton, et al., Transcriptomic changes in zbrafish embryos and larvae following benzo[a]pyrene exposure, Toxicol Sci. 146(2015) 395-411. http://dx.doi.org/10.1093/toxsci/kfv105.

[39]

I.D. Mascanfroni, M.C. Takenaka, A. Yeste, et al., Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α, Nat. Med. 21 (2015) 638-646. https://doi.org/10.1038/nm.3868.

[40]

L. Singh, J.G. Varshneyet al. T. Agarwal, Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food, Food Chem. 199 (2016) 768-781. http://dx.doi.org/10.1016/j.foodchem.2015.12.074.

[41]

L. Rey-Salgueiro, M.S. García-Falcón, E. Martínez-Carballo, et al., Effects of toasting procedures on the levels of polycyclic aromatic hydrocarbons in toasted bread, Food Chem. 108 (2008) 607-615. http://dx.doi.org/10.1016/j.foodchem.2007.11.026.

[42]

Y.H. Chen, E.Q. Xia, X.R. Xu, et al., Evaluation of benzo[a]pyrene in food from China by high-performance liquid chromatography-fluorescence detection, Int. J. Environ. Res. Public Health. 9 (2012) 4159-4169. http://dx.doi.org/10.3390/ijerph9114159.

[43]

E.E. Abd El-Fattahet, A.M. Abdelhamid, Benzo[a]pyrene immunogenetics and immune archetype reprogramming of lung, Toxicology. 463 (2021) 152994. http://dx.doi.org/10.1016/j.tox.2021.152994.

[44]

X. Jin, Q. Hua, Y. Liu, et al., Organ and tissue-specific distribution of selected polycyclic aromatic hydrocarbons (PAHs) in ApoE-KO mouse, Environ Pollut. 286 (2021) 117219. http://dx.doi.org/10.1016/j.envpol.2021.117219.

[45]

H. Shi, J. Liuet al. H. Gao, Benzo(α)pyrene induces oxidative stress and inflammation in human vascular endothelial cells through AhR and NF-κB pathways, Microvasc Res. 137 (2021) 104179. http://dx.doi.org/10.1016/j.mvr.2021.104179.

[46]

J.K. Kerzeeet al. K.S. Ramos, Activation of c-Ha-ras by Benzo(a)pyrene in vascular smooth muscle cells involves redox stress and aryl hydrocarbon receptor, Mol Pharmacol. 58 (2000) 152-158. http://dx.doi.org/10.1124/mol.58.1.152.

[47]

H. Wang, L. Pan, X. Zhang, et al., The molecular mechanism of AhR-ARNT-XREs signaling pathway in the detoxification response induced by polycyclic aromatic hydrocarbons (PAHs) in clam Ruditapes philippinarum, Environ Res. 183 (2020) 109165. http://dx.doi.org/10.1016/j.envres.2020.109165.

[48]

C. Costa, S. Catania, R. De Pasquale, et al., Exposure of human skin to benzo[a]pyrene: role of CYP1A1 and aryl hydrocarbon receptor in oxidative stress generation, Toxicology. 271 (2010) 83-86. http://dx.doi.org/10.1016/j.tox.2010.02.014.

[49]

Y. Fuyuno, H. Uchi, M. Yasumatsu, et al., Perillaldehyde inhibits AHR signaling and activates NRF2 antioxidant pathway in human keratinocytes, Oxid Med Cell Longev. 2018 (2018) 9524657. http://dx.doi.org/10.1155/2018/9524657.

[50]

A. Kazlauskas, S. Sundström, L. Poellinger, et al., The Hsp90 chaperone complex regulates intracellular localization of the dioxin receptor, Mol Cell Biol. 21 (2001) 2594-2607. http://dx.doi.org/10.1128/mcb.21.7.2594-2607.2001.

[51]

B. Stockinger, K. Shahet al. E. Wincent, AHR in the intestinal microenvironment: safeguarding barrier function, Nat. Rev. Gastroenterol. Hepatol. 18 (2021) 559-570. http://dx.doi.org/10.1038/s41575-021-00430-8.

[52]

T. Ikuta, T. Tachibana, J. Watanabe, et al., Nucleocytoplasmic shuttling of the aryl hydrocarbon receptor, J.Biochem. 127 (2000) 503-509. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022633.

[53]

H.C. Chuang, C.Y. Tsai, C.H. Hsueh, et al., GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORgammat complex in IL-17A induction and autoimmune disease, Sci. Adv. 4 (2018) eaat5401. http://dx.doi.org/10.1126/sciadv.aat5401.

[54]

F.J. Quintana, A.S. Basso, A.H. Iglesias, et al., Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor, Nature. 453 (2008) 65-71. http://dx.doi.org/10.1038/nature06880.

[55]

W. Yan, M. Cao, X. Ruan, et al., Cancer-cell-secreted miR-122 suppresses O-GlcNAcylation to promote skeletal muscle proteolysis, Nat Cell Biol. 24 (2022) 793-804. http://dx.doi.org/10.1038/s41556-022-00893-0.

[56]

C. Slawson, N.E. Zachara, K. Vosseller, et al., Perturbations in O-linked β-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis, J. Biol. Chem. 280 (2005) 32944-32956. http://dx.doi.org/10.1074/jbc.M503396200.

[57]

T. Lefebvre, C. Alonso, S. Mahboub, et al., Effect of okadaic acid on O-linked N-acetylglucosamine levels in a neuroblastoma cell line, Biochim Biophys Acta. 1472 (1999) 71-81. http://dx.doi.org/10.1016/s0304-4165(99)00105-1.

[58]

J. Shi, J.H. Gu, C.L. Dai, et al., O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling, Rep. 5 (2015) 14500

[59]

S. Wang, X. Huang, D. Sun, et al., Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates Akt signaling, PLoS ONE. 7 (2012) e37427. http://dx.doi.org/10.1371/journal.pone.0037427.

[60]

M. Song, H.S. Kim, J.M. Park, et al., O-GlcNAc transferase is activated by CaMKIV-dependent phosphorylation under potassium chloride-induced depolarization in NG-108-15 cells, Cell Signal. 20 (2008) 94-104. http://dx.doi.org/10.1016/j.cellsig.2007.09.002.

[61]

Z. Wang, A. Pandeyet, G.W. Hart, Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation, Mol Cell Proteomics. 6 (2007) 1365-1379. http://dx.doi.org/10.1074/mcp.M600453-MCP200.

[62]

N.S. Latysheva, M.E. Oates, L. Maddox, et al., Molecular principles of gene fusion mediated rewiring of protein interaction networks in cancer, Mol Cell. 63 (2016) 579-592. http://dx.doi.org/10.1016/j.molcel.2016.07.008.

[63]

X. Li, W. Yu, X. Qian, et al., Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy, Mol. Cell. 66 (2017) 684-697 e9. http://dx.doi.org/10.1016/j.molcel.2017.04.026.

[64]

R. Fagerlund, L. Kinnunen, M. Köhler, et al., NF-κB is transported into the nucleus by importin α3 and importin α4, J. Biol. Chem. 280 (2005) 15942-15951. http://dx.doi.org/10.1074/jbc.M500814200.

Food Science and Human Wellness
Pages 2263-2275
Cite this article:
Wang R, Huang Y, Gan X, et al. Switch of phosphorylation to O-GlcNAcylation of AhR contributes to vascular oxidative stress induced by benzo[a]pyrene. Food Science and Human Wellness, 2023, 12(6): 2263-2275. https://doi.org/10.1016/j.fshw.2023.03.046

787

Views

27

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 13 August 2022
Revised: 08 September 2022
Accepted: 29 September 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return