AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The specificity of ten non-digestible carbohydrates to enhance butyrate-producing bacteria and butyrate production in vitro fermentation

Jingjing XuaRuyue WangaWeibao LiuaZhongwei YinaJianrong WuaXun YubWen WangbHongtao ZhangaZhitao LiaMinjie GaoaLi ZhucXiaobei Zhana( )
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
Wuxi Second People's Hospital, Wuxi 214125, China
L & F Biotech. Ltd. 7144 Collister Dr. Burnaby BC V5A3P6, Canada

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Butyrate and butyrate-producing bacteria are important indicators of gut microbial metabolism in human health. Ten non-digestible carbohydrates (NDCs), including inulin, fructooligosaccharide (FOS), oats β-glucans (OGS), oats β-glucan oligosaccharides (OGOS), Astragalus polysaccharides (APS), Astragalus oligosaccharides (AOS), xanthan gum oligosaccharides (XGOS), gellan gum oligosaccharides (GGOS), curdlan oligosaccharides (COS), and pullulan oligosaccharides (POS) were used to investigate NDC specificity in modulating butyrate-producing bacteria and butyrate production in 48-h in vitro fermentation studies in combination with fecal inocula from 7 healthy donors and 11 patients with type 2 diabetes (T2D). We observed that the amount of these ten NDCs utilized depended on NDC structure and inter-individual gut microbial differences. XGOS and GGOS fermentations significantly increased butyrate-producing bacteria (especially f_Lachnospiraceae) and butyric acid production. Furthermore, XGOS and GGOS fermentations showed a better ability to consistently modulate gut microbiota composition and metabolic properties between individuals of healthy donors or T2D patients when compared to inulin, FOS, APS, AOS, OGS, OGOS, COS and POS fermentation. This research indicated that xanthan gum and gellan gum oligosaccharides have strong specificity to enhance butyrate-producing bacteria and butyrate production.

References

[1]

A. Banerjee, J. Singh, Remodeling adipose tissue inflammasome for type 2 diabetes mellitus treatment: Current perspective and translational strategies, Bioeng. Transl. Med. 5 (2020) e10150. https://doi.org/10.1002/btm2.10150.

[2]

F.H. Karlsson, V. Tremaroli, I. Nookaew, et al., Gut metagenome in European women with normal, impaired and diabetic glucose control, Nature 498 (2013) 99-103. https://doi.org/10.1038/nature12198.

[3]

J. Qin, Y. Li, Z. Cai, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490 (2012) 55-60. https://doi.org/10.1038/nature11450.

[4]

L. Jia, D. Li, N. Feng, et al., Anti-diabetic effects of Clostridium butyricum CGMCC0313.1 through promoting the growth of gut butyrate-producing bacteria in type 2 diabetic mice, Sci. Rep. 7 (2017) 7046. https://doi.org/10.1038/s41598-017-07335-0.

[5]

Y. Hu, J. Liu, Y. Yuan, et al., Sodium butyrate mitigates type 2 diabetes by inhibiting PERK-CHOP pathway of endoplasmic reticulum stress, Environ. Toxicol. Pharmacol. 64 (2018) 112-121. https://doi.org/10.1016/j.etap.2018.09.002.

[6]

Y.H. Xu, C.L. Gao, H.L. Guo, et al., Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice, J. Endocrinol. 238 (2018) 231-244. https://doi.org/10.1530/joe-18-0137.

[7]

M. Vital, A.C. Howe, J.M. Tiedje, Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data, mBio 5 (2014) e00889-00814. https://doi.org/10.1128/mBio.00889-14.

[8]

X. Fu, Z. Liu, C. Zhu, et al., Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria, Crit. Rev. Food Sci. Nutr. 59 (2019) S130-S152. https://doi.org/10.1080/10408398.2018.1542587.

[9]

W. Jiao, Z. Zhang, Y. Xu, et al., Butyric acid normalizes hyperglycemia caused by the tacrolimus-induced gut microbiota, Am. J. Transplant. 20 (2020) 2413-2424. https://doi.org/10.1111/ajt.15880.

[10]

Q. Nie, J. Hu, H. Gao, et al., Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats, Food Hydrocolloids 86 (2019) 34-42. https://doi.org/10.1016/j.foodhyd.2017.12.026.

[11]

C.F. Yang, S.S. Lai, Y.H. Chen, et al., Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota, Food Chem. Toxicol. 131 (2019) 110562. https://doi.org/10.1016/j.fct.2019.110562.

[12]

M. Fassarella, E.E. Blaak, J. Penders, et al., Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health, Gut 70 (2021) 595-605. https://doi.org/10.1136/gutjnl-2020-321747.

[13]

N. Reichardt, M. Vollmer, G. Holtrop, et al., Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production, ISME J. 12 (2018) 610-622. https://doi.org/10.1038/ismej.2017.196.

[14]

X. Zhang, J. Xie, T. Chen, et al., High arabinoxylan fine structure specificity to gut bacteria driven by corn genotypes but not environment, Carbohydr. Polym. 257 (2021) 117667. https://doi.org/10.1016/j.carbpol.2021.117667.

[15]

Z.A. Bendiks, K.E.B. Knudsen, M.J. Keenan, et al., Conserved and variable responses of the gut microbiome to resistant starch type 2, Nutr. Res. 77 (2020) 12-28. https://doi.org/10.1016/j.nutres.2020.02.009.

[16]

A. Peredo-Lovillo, H.E. Romero-Luna, M. Jimenez-Fernandez, Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism, Food Res. Int. 136 (2020) 109473. https://doi.org/10.1016/j.foodres.2020.109473.

[17]

N.W. Griffin, P.P. Ahern, J. Cheng, et al., Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions, Cell Host Microbe 21 (2017) 84-96. https://doi.org/10.1016/j.chom.2016.12.006.

[18]

M. Muller, G.D.A. Hermes, E.C. Emanuel, et al., Effect of wheat bran derived prebiotic supplementation on gastrointestinal transit, gut microbiota, and metabolic health: a randomized controlled trial in healthy adults with a slow gut transit, Gut Microbes 12 (2020) 1704141. https://doi.org/10.1080/19490976.2019.1704141.

[19]

Q. Li, Y. Niu, P. Xing, et al., Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair, Chin. Med. 13 (2018) 7. https://doi.org/10.1186/s13020-018-0166-0.

[20]

M. Jayachandran, J. Chen, S.S.M. Chung, et al., A critical review on the impacts of β-glucans on gut microbiota and human health, J. Nutr. Biochem. 61 (2018) 101-110. https://doi.org/10.1016/j.jnutbio.2018.06.010.

[21]

Y. Hong, B. Li, N. Zheng, et al., Integrated metagenomic and metabolomic analyses of the effect of Astragalus Polysaccharides on alleviating high-fat diet–Induced metabolic disorders, Front. Pharmacol. 11 (2020) 833. https://doi.org/10.3389/fphar.2020.00833.

[22]

J. Tang, H. Zhen, N. Wang, et al., Curdlan oligosaccharides having higher immunostimulatory activity than curdlan in mice treated with cyclophosphamide, Carbohydr. Polym. 207 (2019) 131-142. https://doi.org/10.1016/j.carbpol.2018.10.120.

[23]

J. Xu, R. Wang, H. Zhang, et al., In vitro assessment of prebiotic properties of oligosaccharides derived from four microbial polysaccharides, LWT - Food Sci. Technol. 147 (2021) 111544. https://doi.org/10.1016/j.lwt.2021.111544.

[24]

R.Y. Wang, X. Yu, J.J. Xu, et al., Effects of oat β-glucan and its oligosaccharides on composition and metabolism of intestinal microorganisms, Food Ferment. Ind. 46 (2020) 85-91. https://doi.org/10.13995/j.cnki.11-1802/ts.023556.

[25]

W.B. Liu, X. Yu, J.J. Xu, et al., Isolation, structure characterization and prebiotic activity of polysaccharides from Astragalus membranaceus, Food Ferment. Ind. 46 (2020) 50-56. https://doi.org/10.13995/j.cnki.11-1802/ts.022967.

[26]

M. Li, G. Li, Q. Shang, et al., In vitro fermentation of alginate and its derivatives by human gut microbiota, Anaerobe 39 (2016) 19-25. https://doi.org/10.1016/j.anaerobe.2016.02.003.

[27]

M. DuBois, K.A. Gilles, J.K. Hamilton, et al., Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350-356. https://doi.org/10.1021/ac60111a017.

[28]

J. Li, Q. Hou, J. Zhang, et al., Carbohydrate staple food modulates gut microbiota of mongolians in China, Front. Microbiol. 8 (2017) 484. https://doi.org/10.3389/fmicb.2017.00484.

[29]

D. Lin, R. Wang, J. Luo, et al., The core and distinction of the gut microbiota in Chinese populations across geography and ethnicity, Microorganisms 8 (2020) 1579. https://doi.org/10.3390/microorganisms8101579.

[30]

M. Vacca, G. Celano, F.M. Calabrese, et al., The controversial role of human gut Lachnospiraceae, Microorganisms 8 (2020) 573. https://doi.org/10.3390/microorganisms8040573.

[31]

K. Uchiyama, Y. Naito, T. Takagi, Intestinal microbiome as a novel therapeutic target for local and systemic inflammation, Pharmacol. Ther. 199 (2019) 164-172. https://doi.org/10.1016/j.pharmthera.2019.03.006.

[32]

P. Louis, P. Young, G. Holtrop, et al., Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene, Environ. Microbiol. 12 (2010) 304-314. https://doi.org/10.1111/j.1462-2920.2009.02066.x.

[33]

W. Chen, S. Zhang, J. Wu, et al., Butyrate-producing bacteria and the gut-heart axis in atherosclerosis, Clin. Chim. Acta 507 (2020) 236-241. https://doi.org/10.1016/j.cca.2020.04.037.

[34]

Y.E. Tuncil, C.H. Nakatsu, A.E. Kazem, et al., Delayed utilization of some fast-fermenting soluble dietary fibers by human gut microbiota when presented in a mixture, J. Funct. Foods 32 (2017) 347-357. https://doi.org/10.1016/j.jff.2017.03.001.

[35]

A.M. Valdes, J. Walter, E. Segal, et al., Role of the gut microbiota in nutrition and health, Br. Med. J. 361 (2018) k2179. https://doi.org/10.1136/bmj.k2179.

[36]

D.K. Mandaliya, S. Seshadri, Short chain fatty acids, pancreatic dysfunction and type 2 diabetes, Pancreatology 19 (2019) 280-284. https://doi.org/10.1016/j.pan.2019.01.021.

[37]

E. Heimann, M. Nyman, E. Degerman, Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes, Adipocyte 4 (2015) 81-88. https://doi.org/10.4161/21623945.2014.960694.

[38]

Z. Gao, J. Yin, J. Zhang, et al., Butyrate improves insulin sensitivity and increases energy expenditure in mice, Diabetes 58 (2009) 1509-1517. https://doi.org/10.2337/db08-1637.

[39]

W.Q. Zhang, T.T. Zhao, D.K. Gui, et al., Sodium butyrate improves liver glycogen metabolism in type 2 diabetes mellitus, J. Agric. Food Chem. 67 (2019) 7694-7705. https://doi.org/10.1021/acs.jafc.9b02083.

[40]

Z.L. Han, M. Yang, X.D. Fu, et al., Evaluation of prebiotic potential of three marine algae oligosaccharides from enzymatic hydrolysis, Mar. Drugs 17 (2019) 173. https://doi.org/10.3390/md17030173.

[41]

Y.H. Mao, A.X. Song, L.Q. Li, et al., A high-molecular weight exopolysaccharide from the Cs-HK1 fungus: Ultrasonic degradation, characterization and in vitro fecal fermentation, Carbohydr. Polym. 246 (2020) 116636. https://doi.org/10.1016/j.carbpol.2020.116636.

[42]

Z. Dou, C. Chen, X. Fu, Digestive property and bioactivity of blackberry polysaccharides with different molecular weights, J. Agric. Food Chem. 67 (2019) 12428-12440. https://doi.org/10.1021/acs.jafc.9b03505.

[43]

S. Li, J. Hu, H. Yao, et al., Interaction between four galactans with different structural characteristics and gut microbiota, Crit. Rev. Food Sci. Nutr. (2021) 1-11. https://doi.org/10.1080/10408398.2021.1992605.

[44]

X. Wei, X. Fu, M. Xiao, et al., Dietary galactosyl and mannosyl carbohydrates: In-vitro assessment of prebiotic effects, Food Chem. 329 (2020) 127179. https://doi.org/10.1016/j.foodchem.2020.127179.

[45]

Y.T. Hao, S.G. Wu, F. Xiong, et al., Succession and fermentation products of grass carp (Ctenopharyngodon idellus) hindgut microbiota in response to an extreme dietary shift, Front. Microbiol. 8 (2017) 1585. https://doi.org/10.3389/fmicb.2017.01585.

[46]

H.C. Harris, C.A. Edwards, D.J. Morrison, Impact of glycosidic bond configuration on short chain fatty acid production from model fermentable carbohydrates by the human gut microbiota, Nutrients 9 (2017) 1-11. https://doi.org/10.3390/nu9010026.

Food Science and Human Wellness
Pages 2344-2354
Cite this article:
Xu J, Wang R, Liu W, et al. The specificity of ten non-digestible carbohydrates to enhance butyrate-producing bacteria and butyrate production in vitro fermentation. Food Science and Human Wellness, 2023, 12(6): 2344-2354. https://doi.org/10.1016/j.fshw.2023.03.038

855

Views

46

Downloads

12

Crossref

10

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 25 November 2021
Revised: 22 December 2021
Accepted: 11 March 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return