AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Effective anti-inflammatory phenolic compounds from dandelion: identification and mechanistic insights using UHPLC-ESI-MS/MS, fluorescence quenching and anisotropy, molecular docking and dynamics simulation

Hui Zoua,1Tingting Bena,1Ping WuaGeoffrey I.N. Waterhouseb( )Yilun Chena( )
College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Tai’an 271018, China
School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand

1 These authors contributed equally to this work and should be considered co-first authors.

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

This novel study identifies the effective anti-inflammatory phenolic compounds in dandelion and provides mechanistic insights into their interactions with receptor proteins (toll-like receptor 4, TLR4; co-receptor myeloid differentiation protein-2, MD-2) using UHPLC-ESI-MS/MS, lipopolysaccharide (LPS)-stimulated THP-1 cell line, fluorescence quenching and anisotropy, molecular docking (single ligand and multi-ligand docking) and molecular dynamics simulation. A 50% aqueous methanol extract had a greater anti-inflammatory effect and higher chicoric acid content, compared with the 100% water and 100% methanol extracts. Chicoric acid, chlorogenic acid, methylophiopogonone A, caffeic acid, gallic acid monohydrate and 4'-O-demethylbroussonin A had relatively high binding energies and contents in all extracts. Chicoric acid competed with chlorogenic acid, 4'-O-demethylbroussonin A and quercetin for MD-2. Among dandelion’s phenolics, chicoric acid most effectively hindered TLR4-MD-2 complex formation, with a quenching constant of 0.62 × 106 L/mol for MD-2 or TLR4 at 320 K, and binding energies of -6.87 and -5.97 kcal/mol, respectively, for MD-2 and TLR4.

References

[1]

L. Chen, H. Deng, H. Cui, et al., Inflammatory responses and inflammation-associated diseases in organs, Oncotarget. 9 (2018) 7204-7218. https://doi.org/10.18632/oncotarget.23208.

[2]

N. Yahfoufi, N. Alsadi, M. Jambi,, et al., The Immunomodulatory and anti-inflammatory role of polyphenols, Nutrients 10 (2018) 1618. https://doi.org/10.3390/nu10111618.

[3]

R. González, I. Ballester, R. López-Posadas, et al., Effects of flavonoids and other polyphenols on inflammation, Crit. Rev. Food Sci. Nutr. 51(2011) 331-362. https://doi.org/10.1080/10408390903584094.

[4]

A. Ciesielska, M. Matyjek, K. Kwiatkowska, TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling, Cell Mol. Life Sci. 78 (2021) 1233-1261. https://doi.org/10.1007/s00018-020-03656-y

[5]

H.M. Kim, B.S. Park, J.I. Kim, et al., Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran, Cell 130 (2007) 906-917. https://doi.org/10.1016/j.cell.2007.08.002.

[6]

A. Oblak, J. Pohar, R. Jerala, MD-2 Determinants of nickel and cobalt-mediated activation of human TLR4, PLoS ONE 10 (2015) e0120583. https://doi.org/10.1371/journal.pone.0120583.

[7]

J.B. Soares, P. Pimentel-Nunes, R. Roncon-Albuquerque, et al., The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases, Hepatolog. Int. 4 (2010) 659-672. https://doi.org/10.1007/s12072-010-9219-x.

[8]

R. Shimazu, S. Akashi, H. Ogata, et al., MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4, J. Exp. Med. 189 (1999) 1777-1782. https://doi.org/10.1084/jem.189.11.1777.

[9]

T.L. Gioannini, A. Teghanemt, D. Zhang et al., Monomeric endotoxin: protein complexes are essential for TLR4-dependent cell activation, J. Endotoxin Res. 11 (2005) 117-123. https://doi.org/10.1177/09680519050110020801.

[10]

B.S. Park, D.H. Song, H.M. Kim, et al., The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex, Nature 458 (2009) 1191-1195. https://doi.org/10.1038/nature07830.

[11]

L.H. Guo, H.J. Schluesener, The innate immunity of the central nervous system in chronic pain: The role of Toll-like receptors, Cell. Mol. Life Sci. 64 (2007) 1128. https://doi.org/10.1007/s00018-007-6494-3.

[12]

H.S. Youn, S.I. Saitoh, K. Miyake, et al., Inhibition of homodimerization of Toll-like receptor 4 by curcumin, Biochem. Pharmacol. 72 (2006) 62-69. https://doi.org/10.1016/j.bcp.2006.03.022.

[13]

S.H. Park, N.D. Kim, J.K. Jung, et al., Myeloid differentiation 2 as a therapeutic target of inflammatory disorders, Pharmacol. Ther. 133 (2012) 291-298. https://doi.org/10.1016/j.pharmthera.2011.11.001.

[14]

Y.J. Guan, M. Lu, Y. Zhang, et al., Protective effects of hesperetin on lipopolysaccharide-induced acute lung injury by targeting MD2, Eur. J. Pharmacol. 852 (2019) 151-158. https://doi.org/10.1016/j.ejphar.2019.02.042.

[15]

F.E. Wirngo, M.N. Lambert, P.B. Jeppesen, The Physiological effects of dandelion (Taraxacum officinale) in type 2 diabetes, Rev. Diabetic Stud. 13 (2016) 113-131. https://doi.org/10.1900/RDS.2016.13.113.

[16]

H.J. Jeon, H.J. Kang, H.J. Jung, et al., Anti-inflammatory activity of Taraxacum officinale, J. Ethnopharmacol. 115 (2008) 82-88. https://doi.org/10.1016/j.jep.2007.09.006.

[17]

L. Grauso, S. Emrick, B. de Falco, et al., Common dandelion: a review of its botanical, phytochemical and pharmacological profiles, Phytochem Rev. 18 (2019) 1115-1132. https://doi.org/10.1007/s11101-019-09622-2.

[18]

Y. Xue, S. Zhang, M. Du, et al., Dandelion extract suppresses reactive oxidative species and inflammasome in intestinal epithelial cells, J. Funct. Foods 29 (2017) 10-18. https://doi.org/10.1016/j.jff.2016.11.032.

[19]

Q. Liu, Y. Chen, C. Shen, et al., Chicoric acid supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of NF-κB, FASEB J. 31 (2017) 1494-1507. https://doi.org/10.1096/fj.201601071R.

[20]

S. Shanmugam, R.D.D. Sandes, M. Rajan, et al., Volatile profiling and UHPLC-QqQ-MS/MS polyphenol analysis of Passiflora leschenaultii DC. fruits and its anti-radical and anti-diabetic properties, Food Res. Int. 133 (2020) 109202. https://doi.org/10.1016/j.foodres.2020.109202.

[21]

F. Chen, Z. Wang, C. Wang, et al., Application of reverse docking for target prediction of marine compounds with anti-tumor activity, J. Mol. Graphics Modell. 77 (2017) 372-377. https://doi.org/10.1016/j.jmgm.2017.09.015.

[22]

S.S. Çınaroğlu, E., Timuçin, In silico identification of inhibitors targeting N-terminal domain of human replication protein A, J. Mol. Graphics Modell. 86 (2019) 149-159. https://doi.org/10.1016/j.jmgm.2018.10.011.

[23]

R. Ancuceanu, B. Tamba, C.S. Stoicescu, et al., Use of QSAR global models and molecular docking for developing new inhibitors of c-src tyrosine kinase, Int. J. Mol. Sci. 21 (2020) 19. https://doi.org/10.3390/ijms21010019.

[24]

F. Kong, B. Ye, L. Lin, et al., Atorvastatin suppresses NLRP3 inflammasome activation via TLR4/MyD88/NF-κB signaling in PMA-stimulated THP-1 monocytes, Biomed. Pharmacother. 82 (2016) 167-172. https://doi.org/10.1016/j.biopha.2016.04.043.

[25]

M. Zhang, J. Wu, J. Han, et al., Isolation of polysaccharides from Dendrobium officinale leaves and anti-inflammatory activity in LPS-stimulated THP-1 cells, Chem. Cent. J. 12 (2018) 109. https://doi.org/10.1186/s13065-018-0480-8.

[26]

X. Zhao, L. Yin, L. Fang, et al., Protective effects of dioscin against systemic inflammatory response syndromevia adjusting TLR2/MyD88/NF-κb signal pathway, Int. Immunopharmacol. 65 (2018) 458-469. https://doi.org/10.1016/j.intimp.2018.10.036.

[27]

K. Kiichiro, M. Tsukasa, K. Yoshio, Effects of antioxidant polyphenols on TNF-Alpha-related diseases, Curr. Top Med. Chem. 11 (2011) 1767-1779. https://doi.org/10.2174/156802611796235152.

[28]

X. Liang, M. Lei, F. Li, et al., Family-wide characterization of histone binding abilities of PHD domains of AL proteins in Arabidopsis thaliana, Protein J. 37 (2018) 531-538. https://doi.org/10.1007/s10930-018-9796-4.

[29]
J.R. Lakowicz, Principles of fluorescence spectroscopy: Springer Science & Business Media, 2013.
[30]

T. Dai, X. Yan, Q. Li, et al., Characterization of binding interaction between rice glutelin and gallic acid: Multi-spectroscopic analyses and computational docking simulation, Food Res. Int. 102 (2017) 274-281. https://doi.org/10.1016/j.foodres.2017.09.020.

[31]

S. Ranjan, W.K. Chung, M. Zhu, et al., Implementation of an experimental and computational tool set to study protein-mAb interactions, Biotechnol. Prog. 35 (2019) e2825. https://doi.org/10.1002/btpr.2825.

[32]

J. Eberhardt, D. Santos-Martins, A. Tillack, et al, Autodock vina 1.2.0: New docking methods, expanded force field, and python bindings, ChemRxiv. 61 (2021) 3891-3898. https://doi.org/10.1021/acs.jcim.1c00203.

[33]

B. Hess, C. Kutzner, D. Van Der Spoel, et al., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput. 4 (2008) 435-447. https://doi.org/10.1021/ct700301q.

[34]

N.A. Al-Shabib, J.M. Khan, A. Malik, et al., Molecular interaction of tea catechin with bovine β-lactoglobulin: A spectroscopic and in silico studies, Saudi Pharm. J. 28 (2020) 238-245. https://doi.org/10.1016/j.foodres.2014.06.001.

[35]

X.L. Wei, J.B. Xiao, Y. Wang, et al., Which model based on fluorescence quenching is suitable to study the interaction between trans-resveratrol and BSA? Spectrochim. Acta, Part A. 75 (2010) 299-304. https://doi.org/10.1016/j.saa.2009.10.027.

[36]

D.T. Moustakas, P.T. Lang, S. Pegg, et al., Development and validation of a modular, extensible docking program: DOCK 5, J. Comput. Aided Mol. Des. 20 (2006) 601-619. https://doi.org/10.1007/s10822-006-9060-4.

[37]

M.S. Jin, J.O. Lee, structures of the toll-like receptor family and its ligand complexes, Immunity 29 (2008) 182-191. https://doi.org/10.1016/j.immuni.2008.07.007.

[38]

N. Matsushima, T. Tanaka, P. Enkhbayar, et al., Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors, BMC Genomics 8 (2007) 124. https://doi.org/10.1186/1471-2164-8-124.

[39]

A. Visintin, D.B. Iliev, B.G. Monks, et al., MD-2, Immunobiol. 211 (2006) 437-447. https://doi.org/10.1016/j.imbio.2006.05.010.

Food Science and Human Wellness
Pages 2184-2194
Cite this article:
Zou H, Ben T, Wu P, et al. Effective anti-inflammatory phenolic compounds from dandelion: identification and mechanistic insights using UHPLC-ESI-MS/MS, fluorescence quenching and anisotropy, molecular docking and dynamics simulation. Food Science and Human Wellness, 2023, 12(6): 2184-2194. https://doi.org/10.1016/j.fshw.2023.03.031

791

Views

73

Downloads

17

Crossref

15

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 30 March 2022
Revised: 24 April 2022
Accepted: 16 May 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return