AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Dendrobium species regulate energy homeostasis in neurodegenerative diseases: a review

Feixuan Wanga,bJingqiong WanaYangzhen LiaocShangyu LiuaYuan WeiaZhen Ouyanga( )
School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
Nanjing Institute of Product Quality Inspection, Nanjing 210019, China
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Brain energy homeostasis is a vital physiological function in maintaining a balanced internal metabolic environment. The impairment of energy homeostasis is recognized as a key pathophysiological basis for brain metabolic disorders and related neurodegenerative diseases. Dendrobium species (‘Shihu’ in Chinese) such as D. officinale, D. huoshanense, D. nobile, D. chrysanthum, D. loddigesii, D. moniliforme, D. gratiosissimum, D. candidum and D. caulis are widely used as traditional Chinese medicines/nutraceuticals to control and treat neurodegenerative disorders. These dietary herbs and their derived compounds possess a variety of biological properties, such as suppression of oxidative stress and neuroinflammation, regulation of energy homeostasis mainly through improving brain mitochondria function, insulin signaling and lipid metabolism. Furthermore, they reduce neurotoxicity, alleviate brain injury and neuropathy, and prevent neurodegenerative conditions including stroke, Alzheimer's disease, Parkinson's disease, and Huntington's disease in humans and/or rodents. Moreover, the nutraceuticals from Dendrobium species promote gut health and aid digestion, which appear to be associated with beneficial effects on brain energy homeostasis. Based on the above-mentioned health benefits associated with Dendrobium species, this work reviews their nutraceutical role in neurodegenerative disorders and further suggests the need to elucidate mechanisms of the underlying molecular actions.

References

[1]

R. Muraleedharan, B. Dasgupta, AMPK in the brain: its roles in glucose and neural metabolism, FEBS. J. 2021 (2021) 16151. https://doi.org/10.1111/febs.16151.

[2]

G. Jamar, D.A. Ribeiro, L.P. Pisani, High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis, Crit. Rev. Food Sci. Nutr. 61(5) (2021) 836-854. https://doi.org/10.1080/10408398.2020.1747046.

[3]

F. Rey, S. Ottolenghi, G.V. Zuccotti, et al., Mitochondrial dysfunctions in neurodegenerative diseases: role in disease pathogenesis, strategies for analysis and therapeutic prospects, Neural. Regen. Res. 17(4) (2022) 754-758. https://doi.org/10.4103/1673-5374.322430.

[4]

I.C. Bras, A. Konig, T.F. Outeiro, Glycation in Huntington’s disease: a possible modifier and target for intervention, J. Huntingtons Dis. 8(3) (2019) 245-256. https://doi.org/10.3233/JHD-190366.

[5]

W. Chen, J. Lu, J. Zhang, et al., Traditional uses, phytochemistry, pharmacology, and quality control of Dendrobium officinale Kimura et. Migo, Front. Pharmacol. 12 (2021) 726528. https://doi.org/10.3389/fphar.2021.726528.

[6]

Z. Mou, Y. Zhao, F. Ye, et al., Identification, biological activities and biosynthetic pathway of Dendrobium alkaloids, Front. Pharmacol. 12 (2021) 605994. https://doi.org/10.3389/fphar.2021.605994.

[7]

H. Yue, H. Zeng, K. Ding, A review of isolation methods, structure features and bioactivities of polysaccharides from Dendrobium species, Chin. J. Nat. Med. 18(1) (2020) 1-27. https://doi.org/10.1016/S1875-5364(20)30001-7.

[8]

X. Nie, Y. Chen, W. Li, et al., Anti-aging properties of Dendrobium nobile lindl.: from molecular mechanisms to potential treatments, J. Ethnopharmacol. 257 (2020) 112839. https://doi.org/10.1016/j.jep.2020.112839.

[9]

V. Cakova, F. Bonte, A. Lobstein, Dendrobium: sources of active ingredients to treat age-related pathologies, Aging Dis. 8(6) (2017) 827-849. https://doi.org/10.14336/AD.2017.0214.

[10]

L. He, Q. Su, L. Bai, et al., Recent research progress on natural small molecule bibenzyls and its derivatives in Dendrobium species, Eur. J. Med. Chem. 204 (2020) 112530. https://doi.org/10.1016/j.ejmech.2020.112530,

[11]

C.I. Wasser, E.C. Mercieca, G. Kong, et al., Gut dysbiosis in Huntington’s disease: associations among gut microbiota, cognitive performance and clinical outcomes, Brain Commun. 2(2) (2020) 110. https://doi.org/10.1093/braincomms/fcaa110.

[12]

J.S. Generoso, V.V. Giridharan, J. Lee, et al., The role of the microbiota-gut-brain axis in neuropsychiatric disorders, Braz. J. Psychiatry. 43(3) (2021) 293-305. https://doi.org/10.1590/1516-4446-2020-0987.

[13]

T. Doifode, V.V. Giridharan, J.S. Generoso, et al., The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology, Pharmacol. Res. 164 (2021) 105314. https://doi.org/10.1016/j.phrs.2020.105314.

[14]

S. Fan, Z. Zhang, Y. Zhong, et al., Microbiota-related effects of prebiotic fibres in lipopolysaccharide-induced endotoxemic mice: Short-chain fatty acid production and gut commensal translocation, Food Funct. 12(16) (2021) 7343-7357. https://doi.org/10.1039/d1fo00410g.

[15]

L. Li, H. Yao, X. Li, et al., Destiny of Dendrobium officinale polysaccharide after oral administration: Indigestible and nonabsorbing, ends in modulating gut microbiota, J. Agric. Food Chem. 67(21) (2019) 5968-5977. https://doi.org/10.1021/acs.jafc.9b01489.

[16]

X.W. Li, H.P. Chen, Y.Y. He, et al., Effects of rich-polyphenols extract of Dendrobium loddigesii on anti-diabetic, anti-inflammatory, anti-oxidant, and gut microbiota modulation in db/db mice, Molecules 23(12) (2018) 3245. https://doi.org/10.3390/molecules23123245.

[17]

J.Q. Wan, X.H. Gong, F.X. Wang, et al., Comparative analysis of chemical constituents by HPLC-ESI-MSn and antioxidant activities of Dendrobium huoshanense and Dendrobium officinale, Biomed. Chromatogr. 36 (2022) e5250. https://doi.org/10.1002/bmc.5250.

[18]

Q.F. Xie, L. Xie, X.H. Gong, et al., Antioxidant activity of different extraction parts of Huoshan Dendrobium officinale, Food Science and Technology 43(9) (2018) 275-278. https://doi.org/10.13684/j.cnki.spkj.2018.09.047.

[19]

J. Liu, T. Zhu, Q. Niu, et al., Dendrobium nobile alkaloids protects against H2O2-induced neuronal injury by suppressing JAK-STATs pathway activation in N2a cells, Biol. Pharm. Bull. 43(4) (2020) 716-724. https://doi.org/10.1248/bpb.b19-01083.

[20]

M.Y. Yoon, J.H. Hwang, J.H. Park, et al., Neuroprotective effects of SG-168 against oxidative stress-induced apoptosis in PC12 cells, J. Med. Food 14(1/2) (2011) 120-127. https://doi.org/10.1089/jmf.2010.1027.

[21]

C. Ma, C.W. Meng, Q.M. Zhou, et al., New sesquiterpenoids from the stems of Dendrobium nobile and their neuroprotective activities, Fitoterapia 138 (2019) 104351. https://doi.org/10.1016/j.fitote.2019.104351.

[22]

M. Wang, C.F. Zhang, Z.T. Wang, et al., Studies on constituents of Dendrobium gratiosissimum, Zhongguo Zhong Yao Za Zhi 32(8) (2007) 701-703. https://doi.org/10.3321/j.issn:1001-5302.2007.08.013.

[23]

H.S. Zhao, F.Q. Xu, X.X. Chen, et al., Chemical constituents of Dendrobium huoshanense, Nat. Prod. Res. Dev. 33 (2021) 1491-1498. https://doi.org/10.16333/j.1001-6880.2021.9.006.

[24]

M.J. Chung, S. Lee, Y.I. Park, et al., Neuroprotective effects of phytosterols and flavonoids from Cirsium setidens and Aster scaber in human brain neuroblastoma SK-N-SH cells, Life Sci. 148 (2016) 173-182. https://doi.org/10.1016/j.lfs.2016.02.035.

[25]

Y. Li, Z. Zhang, Gastrodin improves cognitive dysfunction and decreases oxidative stress in vascular dementia rats induced by chronic ischemia, Int. J. Clin. Exp. Pathol. 8(11) (2015) 14099-14109.

[26]

L. Chen, S.H. Zhang, X.Y. Liu, et al., Effects of Dendrobium polysaccharides on human brain microvascular endothelial cell injury induced by ox-LDL via regulating the miR-378 expression, Cell. Mol. Biol. 66(7) (2021) 66-71. https://doi.org/10.14715/cmb/2020.66.7.11.

[27]

W. Yu, Q.S. Zhang, C.X. Wei, et al., MiR-378 modulates energy imbalance and apoptosis of mitochondria induced by doxorubicin, Am. J. Transl. Res. 10(11) (2018) 3600-3609.

[28]

Y. Zhang, C. Li, H. Li, et al., Mir-378 activates the pyruvate-pep futile cycle and enhances lipolysis to ameliorate obesity in mice, EBio. Medicine 5 (2016) 93-104. https://doi.org/10.1016/j.ebiom.2016.01.035.

[29]

H.C. Luo, T.Z. Yi, F.G. Huang, et al., Role of long noncoding RNA MEG3/miR-378/GRB2 axis in neuronal autophagy and neurological functional impairment in ischemic stroke, J. Biol. Chem. 295(41) (2020) 14125-14139. https://doi.org/10.1074/jbc.RA119.010946.

[30]

S. Nair, K.S. Sobotka, P. Joshi, et al., Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo, Glia. 67(6) (2019) 1047-1061. https://doi.org/10.1002/glia.23587.

[31]

D. Collotta, W. Hull, R. Mastrocola, et al., Baricitinib counteracts metaflammation, thus protecting against diet-induced metabolic abnormalities in mice, Mol. Metab. 39 (2020) 101009. https://doi.org/10.1016/j.molmet.2020.101009.

[32]

L.Q. Peng, X. Dong, X.T. Zhen, et al., Simultaneous separation and concentration of neutral analytes by cyclodextrin assisted sweeping-micellar electrokinetic chromatography, Anal. Chim. Acta. 1105 (2020) 224-230. https://doi.org/10.1016/j.aca.2020.01.037.

[33]

J.M. Hu, J.J. Chen, H. Yu, et al., Two novel bibenzyls from Dendrobium trigonopus, J. Asian. Nat. Prod. Res. 10(7) (2008) 653-657. https://doi.org/10.1080/10286020802133605.

[34]

L.H. Wu, C. Lin, H.Y. Lin, et al., Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expressions, Mol. Neurobiol. 53(2) (2016) 1080-1091. https://doi.org/10.1007/s12035-014-9042-9.

[35]

Y. Li, F. Li, Q. Gong, et al., Inhibitory effects of Dendrobium alkaloids on memory impairment induced by lipopolysaccharide in rats, Planta Med. 77(2) (2011) 117-121. https://doi.org/10.1055/s-0030-1250235.

[36]

S. Yang, Q. Gong, Q. Wu, et al., Alkaloids enriched extract from Dendrobium nobile Lindl. attenuates tau protein hyperphosphorylation and apoptosis induced by lipopolysaccharide in rat brain, Phytomedicine 21(5) (2014) 712-716. https://doi.org/10.1016/j.phymed.2013.10.026.

[37]

B. Nam, H.J. Jang, A.R. Han, et al., Chemical and biological profiles of Dendrobium in two different species, their hybrid, and gamma-irradiated mutant lines of the hybrid based on LC-QTOF MS and cytotoxicity analysis, Plants (Basel) 10(7) (2021) 1376. https://doi.org/10.3390/plants10071376.

[38]

L. Zhang, X. Jiang, J. Zhang, et al., (−)-Syringaresinol suppressed LPS-induced microglia activation via downregulation of NF-κB p65 signaling and interaction with Erβ, Int. Immunopharmacol. 99 (2021) 107986. https://doi.org/10.1016/j.intimp.2021.107986.

[39]

G., Vail, T.A. Roepke, Membrane-initiated estrogen signaling via Gq-coupled GPCR in the central nervous system, Steroids 142 (2019) 77-83. https://doi.org/10.1016/j.steroids.2018.01.010.

[40]

Y.Y. Liu, H. Yu, F. Yuan, et al., Study on distributed patterns of scoparone and ayapin in Dendrobium species from Yunnan, Zhongguo Zhong Yao Za Zhi 38(21) (2013) 3691-3695. https://doi.org/10.4268/cjcmm20132118.

[41]

N. Suwanprakorn, P. Chanvorachote, T. Tongyen, et al., Scoparone induces expression of pluripotency transcription factors SOX2 and NANOG in dermal papilla cells, In vivo 35(5) (2021) 2589-2597. https://doi.org/10.21873/invivo.12541.

[42]

D.Y. Cho, H.M. Ko, J. Kim, et al., Scoparone inhibits LPS-simulated inflammatory response by suppressing IRF3 and ERK in BV-2 microglial cells, Molecules 21(12) (2016) 1718. https://doi.org/10.3390/molecules21121718.

[43]

N. Zhao, G. Yang, Y. Zhang, et al., A new 9,10-dihydrophenanthrene from Dendrobium moniliforme, Nat. Prod. Res. 30(2) (2016) 174-179. https://doi.org/10.1080/14786419.2015.1046379.

[44]

R. Ullah, M. Ikram, T.J. Park, et al., Vanillic acid, a bioactive phenolic compound, counteracts LPS-induced neurotoxicity by regulating c-jun N-Terminal kinase in mouse brain, Int. J. Mol. Sci. 22(1) (2020) 361. https://doi.org/10.3390/ijms22010361.

[45]

K. Schroder, R. Zhou, J. Tschopp, The NLRP3 inflammasome: a sensor for metabolic danger? Science 327(5963) (2010) 296-300. https://doi.org/10.1126/science.1184003.

[46]

C. Chen, Y.Z. Wei, X.M. He, et al., Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation, Front. Immunol. 10 (2019) 936. https://doi.org/10.3389/fimmu.2019.00936.

[47]

L.H. Ye, R. Zhang, J. Cao, Screening of β-secretase inhibitors from Dendrobii caulis by covalently enzyme-immobilized magnetic beads coupled with ultra-high-performance liquid chromatography, J. Pharm. Biomed. Anal. 195 (2021) 113845. https://doi.org/10.1016/j.jpba.2020.113845.

[48]

J. Wu, L. Maoqiang, H. Fan, et al., Rutin attenuates neuroinflammation in spinal cord injury rats, J. Surg. Res. 203(2) (2016) 331-337. https://doi.org/10.1016/j.jss.2016.02.041.

[49]

G.P. Lang, C. Li, Y.Y. Han, Rutin pretreatment promotes microglial M1 to M2 phenotype polarization, Neural. Regen. Res. 16(12) (2021) 2499-2504. https://doi.org/10.4103/1673-5374.313050.

[50]

Y. Xiang, X. Chen, W. Wang, et al., Natural product erianin inhibits bladder cancer cell growth by inducing ferroptosis via NLRP3 inactivation, Front. Pharmacol. 12 (2021) 775506. https://doi.org/10.3389/fphar.2021.775506.

[51]

X. Zhang, L. Hu, S. Xu, et al., Erianin: a direct NLRP3 inhibitor with remarkable anti-inflammatory activity, Front. Immunol. 12 (2021) 739953. https://doi.org/10.3389/fimmu.2021.739953.

[52]

T. Ye, X. Meng, R. Wang, et al., Gastrodin alleviates cognitive dysfunction and depressive-like behaviors by inhibiting ER stress and NLRP3 inflammasome activation in db/db mice, Int. J. Mol. Sci. 19(12) (2018) 3977. https://doi.org/10.3390/ijms19123977.

[53]

Y.L. Ding, L.Y. Lin, D.Q. Chen, et al., Content determination of six flavonoids in Dendrobium officinale stems from different producing areas, cultivation and processing methods by QAMS combined with dual-wavelength method, Zhongguo Zhong Yao Za Zhi 46(14) (2021) 3605-3613.https://doi.org/10.19540/j.cnki.cjcmm.20210526.301.

[54]

K. Zhou, J. Wu, J. Chen, et al., Schaftoside ameliorates oxygen glucose deprivation-induced inflammation associated with the TLR4/Myd88/Drp1-related mitochondrial fission in BV2 microglia cells, J. Pharmacol. Sci. 139(3) (2019); 139: 15-22. https://doi.org/10.1016/j.jphs.2021.01.004.

[55]

J. Liang, Y. Wu, H. Yuan, et al., Dendrobium officinale polysaccharides attenuate learning and memory disabilities via anti-oxidant and anti-inflammatory actions, Int. J. Biol. Macromol. 126 (2019) 414-426. https://doi.org/10.1016/j.ijbiomac.2018.12.230.

[56]

S.Y. Cho, J. Kim, J.H. Lee, et al., Modulation of gut microbiota and delayed immunosenescence as a result of Syringaresinol consumption in middle-aged mice, Sci. Rep. 6 (2016) 39026. https://doi.org/10.1038/srep39026.

[57]

A. Merelli, M. Repetto, A. Lazarowski, et al., Hypoxia, oxidative stress, and inflammation: three faces of neurodegenerative diseases, J. Alzheimers. Dis. 82(1) (2021) 109-126. https://doi.org/10.3233/JAD-201074.

[58]

X.L. Li, M. Hong, Aqueous extract of Dendrobium officinale confers neuroprotection against hypoxic-ischemic brain damage in neonatal rats, Kaohsiung. J. Med. Sci. 36(1) (2020) 43-53. https://doi.org/10.1002/kjm2.12139.

[59]

R. Dou, X. Liu, X. Kan, et al., Dendrobium officinale polysaccharide-induced neuron-like cells from bone marrow mesenchymal stem cells improve neuronal function a rat stroke model, Tissue. Cell 73 (2021) 101649. https://doi.org/10.1016/j.tice.2021.101649.

[60]

J. Liu, Y. Han, T. Zhu, et al., Dendrobium nobile Lindl. Polysaccharides reduce cerebral ischemia/reperfusion injury in mice by increasing myeloid cell leukemia 1 via the downregulation of miR-134, Neuroreport 32(3) (2021) 177-187. https://doi.org/10.1097/WNR.0000000000001562.

[61]

C. Jin, Z. Du, L. Lin, et al., Structural characterization of mannoglucan from Dendrobium nobile Lindl and the neuritogenesis-induced effect of its acetylated derivative on PC-12 cells, Polymers (Basel) 9(9) (2017) 399. https://doi.org/10.3390/polym9090399.

[62]

S. Jimenez, E.M. Mateos, T. Engel, et al., Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects, Nat. Med. 18(7) (2012) 1087-1094. https://doi.org/10.1038/nm.2834.

[63]

Q. Wang, Q. Gong, Q. Wu, et al., Neuroprotective effects of Dendrobium alkaloids on rat cortical neurons injured by oxygen-glucose deprivation and reperfusion, Phytomedicine 17(2) (2010) 108-115. https://doi.org/10.1016/j.phymed.2009.05.010.

[64]

H. Wang, A.F. Tri, X. Chen, et al., Embryonic lethal abnormal vision proteins and adenine and uridine-rich element mRNAs after global cerebral ischemia and reperfusion in the rat, J. Cereb. Blood Flow Metab. 37(4) (2017) 1494-1507. https://doi.org/10.1177/0271678X16657572.

[65]

D. Liu, Z. Dong, F. Xiang, et al., Dendrobium alkaloids promote neural function after cerebral ischemia-reperfusion injury through inhibiting pyroptosis induced neuronal death in both in vivo and in vitro models, Neurochem. Res. 45(2) (2020) 437-454. https://doi.org/10.1007/s11064-019-02935-w.

[66]

S.R. Yoo, S.J. Jeong, N.R. Lee, et al., Simultaneous determination and anti-inflammatory effects of four phenolic compounds in Dendrobii herba, Nat. Prod. Res. 31(24) (2017) 2923-2926. https://doi.org/10.1080/14786419.2017.1300798.

[67]

Y. Cao, L. Zhang, S. Sun, et al., Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells, Int. J. Mol. Med. 38(2) (2016) 567-573. https://doi.org/10.3892/ijmm.2016.2623.

[68]

M. Guven, A.B. Aras, N. Topaloglu, et al., The protective effect of syringic acid on ischemia injury in rat brain, Turk. J. Med. Sci. 1(45) (2015) 233-240. https://doi.org/10.3906/sag-1402-71.

[69]

W.H. Chao, M.Y. Lai, H.T. Pan, et al., Dendrobium nobile lindley and its bibenzyl component moscatilin are able to protect retinal cells from ischemia/hypoxia by dowregulating placental growth factor and upregulating Norrie disease protein, BMC Complement Altern. Med. 18(1) (2018) 193. https://doi.org/10.1186/s12906-018-2256-z.

[70]

P.C. Kuo, Y.R. Liao, H.Y. Hung, et al., Anti-inflammatory and neuroprotective constituents from the peels of citrus grandis, Molecules 22(6) (2017) 967. https://doi.org/10.3390/molecules22060967.

[71]

Y.P. Zhu, X. Li, Y. Du, et al., Protective effect and mechanism of p-hydroxybenzaldehyde on blood-brain barrier, Zhongguo Zhong Yao Za Zhi 43(5) (2018) 1021-1027. https://doi.org/10.19540/j.cnki.cjcmm.20171113.014.

[72]

X.B. Lan, Q. Wang, J.M. Yang, et al., Neuroprotective effect of Vanillin on hypoxic-ischemic brain damage in neonatal rats, BioMed. Pharmacother. 118 (2019) 109196. https://doi.org/10.1016/j.biopha.2019.109196.

[73]

S.E. Khoshnam, A. Sarkaki, M. Rashno, et al., Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of Vanillic acid, Life Sci. 211 (2018) 126-132. https://doi.org/10.1016/j.lfs.2018.08.065.

[74]

Y. Li, C. Wang, F. Wang, et al., Chemical constituents of Dendrobium candidum, Zhongguo Zhong Yao Za Zhi 35(13) (2010) 1715-1719. https://doi.org/10.4268/cjcmm20101314.

[75]

M.M. Li, L.Y. Wu, T. Zhao, et al., The protective role of 5-hydroxymethyl-2-furfural (5-HMF) against acute hypobaric hypoxia, Cell Stress Chaperones 16(5) (2011) 529-537. https://doi.org/10.1007/s12192-011-0264-8.

[76]

B. Ya, L. Zhang, L. Zhang, et al., 5-hydroxymethyl-2-furfural prolongs survival and inhibits oxidative stress in a mouse model of forebrain ischemia, Neural. Regen. Res. 7(22) (2012) 1722-1728 https://doi.org/10.3969/j.issn.1673-5374.2012.22.007.

[77]

B.L. Ya, H.F. Li, H.Y. Wang, et al., 5-HMF attenuates striatum oxidative damage via Nrf2/ARE signaling pathway following transient global cerebral ischemia, Cell Stress Chaperones 22(1) (2017) 55-65. https://doi.org/10.1007/s12192-016-0742-0.

[78]

B. Liu, F. Li, J. Shi, et al., Gastrodin ameliorates subacute phase cerebral ischemia-reperfusion injury by inhibiting inflammation and apoptosis in rats, Mol. Med. Rep. 14(5) (2016) 4144-4152. https://doi.org/10.3892/mmr.2016.5785.

[79]

X. Bai, X. Zhang, L. Chen, et al., Protective effect of naringenin in experimental ischemic stroke: down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression, Neurochem. Res. 39(8) (2014) 1405-1415. https://doi.org/10.1007/s11064-014-1326-y.

[80]

L.H. Jiang, X.L. Yuan, N.Y. Yang, et al., Daucosterol protects neurons against oxygen-glucose deprivation/reperfusion-mediated injury by activating IGF1 signaling pathway, J. Steroid. Biochem. Mol. Biol. 152 (2015) 45-52. https://doi.org/10.1016/j.jsbmb.2015.04.007.

[81]

H. Zhang, Y. Song, C. Feng, Improvement of cerebral ischemia/reperfusion injury by daucosterol palmitate-induced neuronal apoptosis inhibition via PI3K/Akt/mTOR signaling pathway, Metab. Brain Dis. 35(6) (2020) 1035-1044. https://doi.org/10.1007/s11011-020-00575-6.

[82]

Z. Peng, S. Wang, G. Chen, et al., Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway, Neurochem. Res. 40(4) (2015) 661-673. https://doi.org/10.1007/s11064-015-1513-5.

[83]

X. Zhang, M. Wang, C. Zhang, et al., Clinical study of Dendrobium nobile lindl intervention on patients with metabolic syndrome, Medicine (Baltimore) 100(12) (2021) e24574. https://doi.org/10.1097/MD.0000000000024574

[84]

J. Qu, S. Tan, X. Xie, et al., Dendrobium officinale polysaccharide attenuates insulin resistance and abnormal lipid metabolism in obese mice, Front. Pharmacol. 12 (2021) 659626. https://doi.org/10.3389/fphar.2021.659626.

[85]

M.T. Kuang, J.Y. Li, X.B. Yang, et al., Structural characterization and hypoglycemic effect via stimulating glucagon-like peptide-1 secretion of two polysaccharides from Dendrobium officinale, Carbohydr. Polym. 241 (2020) 116326. https://doi.org/10.1016/j.carbpol.2020.116326.

[86]

C.E. Koch, G.K. Ganjam, J. Steger, et al., The dietary flavonoids naringenin and quercetin acutely impair glucose metabolism in rodents possibly via inhibition of hypothalamic insulin signalling, Br. J. Nutr. 109(6) (2013) 1040-1051. https://doi.org/10.1017/S0007114512003005.

[87]

M.C. Lai, W.Y. Liu, S.S. Liou, et al., A bibenzyl component moscatilin mitigates glycation-mediated damages in an SH-SY5Y cell model of neurodegenerative diseases through AMPK activation and RAGE/NF-κB pathway suppression, Molecules 25(4574) (2020) 4574. https://doi.org/10.3390/molecules25194574.

[88]

M.C. Lai, W.Y. Liu, S.S. Liou, et al., The protective effects of moscatilin against methylglyoxal-induced neurotoxicity via the regulation of p38/JNK MAPK pathways in PC12 neuron-like cells, Food Chem. Toxicol. 140 (2020) 111369. https://doi.org/10.1016/j.fct.2020.111369.

[89]

M. Rashedinia, M. Alimohammadi, N. Shalfroushan, et al., Neuroprotective effect of Syringic acid by modulation of oxidative stress and mitochondrial mass in diabetic rats, Biomed. Res. Int. 2020 (2020) 8297984. https://doi.org/10.1155/2020/8297984.

[90]

W. Sun, B. Miao, X.C. Wang, et al., Gastrodin inhibits allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing excitability of nociceptive primary sensory neurons, PLoS. One 7(6) (2012) e39647. https://doi.org/10.1371/journal.pone.0039647.

[91]

Y.H. Qi, R. Zhu, Q. Wang, et al., Early intervention with gastrodin reduces striatal neurotoxicity in adult rats with experimentally-induced diabetes mellitus, Mol. Med. Rep. 19(4) (2019) 3114-3122. https://doi.org/10.3892/mmr.2019.9954.

[92]

D.D. Li, C.Q. Zheng, F. Zhang, et al., Potential neuroprotection by Dendrobium nobile lindl alkaloid in Alzheimer’s disease models, Neural. Regen. Res. 17(5) (2022) 972-977. https://doi.org/10.4103/1673-5374.324824.

[93]

Y. Liu, T. Pi, X. Yang, J. Shi, Protective effects and mechanisms of Dendrobium nobile Lindl. alkaloids on PC12 cell damage induced by Aβ25-35, Behav. Neurol. 2021 (2021) 9990375. https://doi.org/10.3233/JAD-215433.

[94]

W. Zhang, Q. Wu, Y.L. Lu, et al., Protective effects of Dendrobium nobile lindl. alkaloids on amyloid beta (25-35)-induced neuronal injury, Neural. Regen. Res. 12(7) (2017) 1131-1136. https://doi.org/10.4103/1673-5374.211193.

[95]

J. Nie, Y. Tian, Y. Zhang, et al., Dendrobium alkaloids prevent Aβ25-35-induced neuronal and synaptic loss via promoting neurotrophic factors expression in mice, PeerJ. 4 (2016) e2739. https://doi.org/10.7717/peerj.2739.

[96]

X. Li, X. Zhang, R. Xing, et al., Syringic acid demonstrates promising protective effect against tau fibrillization and cytotoxicity through regulation of endoplasmic reticulum stress-mediated pathway as a prelude to Alzheimer’s disease, Int. J. Biol. Macromol. 192 (2021) 491-497. https://doi.org/10.1016/j.ijbiomac.2021.09.173.

[97]

L.S. Li, Y.L. Lu, J. Nie, et al., Dendrobium nobile lindl alkaloid, a novel autophagy inducer, protects against axonal degeneration induced by Aβ25-35 in hippocampus neurons in vitro, CNS Neurosci. Ther. 23(4) (2017) 329-340. https://doi.org/10.1111/cns.12678.

[98]

R.J. Wurtman, M. Cansev, T. Sakamoto, et al., Nutritional modifiers of aging brain function: use of uridine and other phosphatide precursors to increase formation of brain synapses, Nutr. Rev. 68(2) (2010) 88-101. https://doi.org/10.1111/j.1753-4887.2010.00344.x.

[99]

A. Pesini, E. Iglesias, M.P. Bayona-Bafaluy, et al., Brain pyrimidine nucleotide synthesis and Alzheimer disease, Aging (Albany. NY) 11(19) (2019) 8433-8462. https://doi.org/10.18632/aging.102328.

[100]

T. Pi, S. Wei, Y. Jiang, et al., High methionine diet-induced Alzheimer’s disease like symptoms is accompanied by 5-methylcytosine elevated levels in the brain, Behav. Neurol. 2021 (2021) 6683318. https://doi.org/10.1155/2021/6683318.

[101]

T. Pi, G. Lang, B. Liu, et al., Protective effects of Dendrobium nobile lindl. alkaloids on Alzheimer’s disease-like symptoms induced by high-methionine diet, Curr. Neuropharmacol. 20(5) (2022) 983-997. https://doi.org/10.2174/1570159X19666210809101945.

[102]

J. Huang, N. Huang, M. Zhang, et al., Dendrobium alkaloids decrease Aβ by regulating α- and β-secretases in hippocampal neurons of SD rats, PeerJ. 7(9) (2019) e7627. https://doi.org/10.7717/peerj.7627.

[103]

J. Nie, L.S. Jiang, Y. Zhang, et al., Dendrobium nobile Lindl. alkaloids decreases the level of intracellular β-amyloid by improving impaired autolysosomal proteolysis in APP/PS1 mice, Front. Pharmacol. 9 (2018) 1479. https://doi.org/10.3389/fphar.2018.01479.

[104]

B. Liu, B. Huang, J. Liu, et al., Dendrobium nobile lindl alkaloid and metformin ameliorate cognitive dysfunction in senescence-accelerated mice via suppression of endoplasmic reticulum stress, Brain Res. 1741 (2020) 146871. https://doi.org/10.1016/j.brainres.2020.146871.

[105]

L.L. Lv, B. Liu, J. Liu, et al., Dendrobium nobile Lindl. alkaloids ameliorate cognitive dysfunction in senescence accelerated SAMP8 mice by decreasing amyloid-β aggregation and enhancing autophagy activity, J. Alzheimers Dis. 76(2) (2020) 657-669. https://doi.org/10.3233/JAD-200308.

[106]

C.Z. Feng, L. Cao, D. Luo, et al., Dendrobium polysaccharides attenuate cognitive impairment in senescence-accelerated mouse prone 8 mice via modulation of microglial activation, Brain Res. 1704(1) (2019) 1-10. https://doi.org/10.1016/j.brainres.2018.09.030.

[107]

Z.H. Ji, Z.Q. Xu, H. Zhao, et al., Neuroprotective effect and mechanism of daucosterol palmitate in ameliorating learning and memory impairment in a rat model of Alzheimer’s disease, Steroids 119 (2017) 31-35. https://doi.org/10.1016/j.steroids.2017.01.003.

[108]

F.U. Amin, S.A. Shah, M.O. Kim, Vanillic acid attenuates Aβ1-42-induced oxidative stress and cognitive impairment in mice, Sci. Rep. 7 (2017) 40753. https://doi.org/10.1038/srep40753.

[109]

N. Ahmadi, S. Safari, N. Mirazi, et al., Effects of Vanillic acid on Aβ1-40-induced oxidative stress and learning and memory deficit in male rats, Brain Res. Bull. 170 (2021) 264-273. https://doi.org/10.1016/j.brainresbull.2021.02.024.

[110]

C.S. Zhao, Q.F. Liu, F. Halaweish, et al., Copacamphane, picrotoxane, and alloaromadendrane sesquiterpene glycosides and phenolic glycosides from Dendrobium moniliforme, J. Nat. Prod. 66(8) (2003) 1140-1143. https://doi.org/10.1021/np0301801.

[111]

G. Karthivashan, M.H. Kweon, S.Y. Park, et al., Cognitive-enhancing and ameliorative effects of acanthoside b in a scopolamine-induced amnesic mouse model through regulation of oxidative/inflammatory/cholinergic systems and activation of the TrkB/CREB/BDNF pathway, Food Chem. Toxicol. 129 (2019) 444-457. https://doi.org/10.1016/j.fct.2019.04.062.

[112]

J.M. Huang, F.I. Huang, C.R. Yang, Moscatilin ameliorates tau phosphorylation and cognitive deficits in Alzheimer’s disease models, J. Nat. Prod. 82(7) (2019) 1979-1988. https://doi.org/10.1021/acs.jnatprod.9b00375.

[113]

S. Habtemariam, Rutin as a natural therapy for Alzheimer’s disease: Insights into its mechanisms of action, Curr. Med. Chem. 23(9) (2016) 860-873. https://doi.org/10.2174/0929867323666160217124333.

[114]

I.O. Ishola, T.G. Olubodun-Obadun, M.A. Ojulari, et al., Rutin ameliorates scopolamine-induced learning and memory impairments through enhancement of antioxidant defense system and cholinergic signaling, Drug Metab. Pers. Ther. 118 (2020) 32990646. https://doi.org/10.1515/dmdi-2020-0118.

[115]

Y.H. Kim, J.H. Park, Vanillin and 4-hydroxybenzyl alcohol attenuate cognitive impairment and the reduction of cell proliferation and neuroblast differentiation in the dentate gyrus in a mouse model of scopolamine-induced amnesia, Anat. Cell Biol. 50(2) (2017) 143-151. https://doi.org/10.5115/acb.2017.50.2.143.

[116]

J.C. Lee, I.H. Kim, J.H. Cho, et al., Vanillin improves scopolamine-induced memory impairment through restoration of ID1 expression in the mouse hippocampus, Mol. Med. Rep. 17(3) (2018) 4399-4405. https://doi.org/10.3892/mmr.2018.8401.

[117]

L. Yang, S.J. Liu, H.R. Luo, et al., Two new dendrocandins with neurite outgrowth-promoting activity from Dendrobium officinale, J. Asian Nat. Prod. Res. 17(1/2) (2015) 125-131. https://doi.org/10.1080/10286020.2014.942294.

[118]

M. Lawal, F.A. Olotu, M.E.S. Soliman, Across the blood-brain barrier: neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer’s disease using bioinformatics and computational tools, Comput. Biol. Med. 98 (2018) 168-177. https://doi.org/10.1016/j.compbiomed.2018.05.012.

[119]

S. Ghofrani, M.T. Joghataei, S. Mohseni, et al., Naringenin improves learning and memory in an Alzheimer’s disease rat model: insights into the underlying mechanisms, Eur. J. Pharmacol. 764 (2015) 195-201. https://doi.org/10.1016/j.ejphar.2015.07.001.

[120]

F. Yin, H. Sancheti, I. Patil, et al., Energy metabolism and inflammation in brain aging and Alzheimer’s disease, Free Radic. Biol. Med. 100 (2016) 108-122. https://doi.org/10.1016/j.freeradbiomed.2016.04.200.

[121]

P.X. Xu, S.W. Wang, X.L. Yu, et al., Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation, Behav. Brain Res. 264 (2014) 173-180. https://doi.org/10.1016/j.bbr.2014.02.002.

[122]

X.Y. Sun, L.J. Li, Q.X. Dong, et al., Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease, J. Neuroinflammation 18(1) (2021) 131. https://doi.org/10.1186/s12974-021-02182-3.

[123]

R.Y. Pan, J. Ma, X.X. Kong, et al., Sodium rutin ameliorates Alzheimer’s disease-like pathology by enhancing microglial amyloid-β clearance, Sci. Adv. 5(2) (2019) 6328. https://doi.org/10.1126/sciadv.aau6328.

[124]

Z. Elmazoglu, S. Galvan-Arzate, M. Aschner, et al., Redox-active phytoconstituents ameliorate cell damage and inflammation in rat hippocampal neurons exposed to hyperglycemia+Aβ1-42 peptide, Neurochem. Int. 145 (2021) 104993. https://doi.org/10.1016/j.neuint.2021.104993.

[125]

H. Javed, M.M. Khan, A. Ahmad, et al., Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type, Neuroscience 210 (2012) 340-352. https://doi.org/10.1016/j.neuroscience.2012.02.046.

[126]

W. Yang, J. Ma, Z. Liu, et al., Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats, Neurol. Sci. 35(5) (2014) 741-751. https://doi.org/10.1007/s10072-013-1594-3.

[127]

M.B. Khan, M.M. Khan, A. Khan, et al., Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model, Neurochem. Int. 61(7) (2012) 1081-1093. https://doi.org/10.1016/j.neuint.2012.07.025.

[128]

M. Kacířová, B. Železná, M. Blažková, et al., Aging and high-fat diet feeding lead to peripheral insulin resistance and sex-dependent changes in brain of mouse model of tau pathology THY-Tau22, J. Neuroinflamm. 18 (2021) 141. https://doi.org/10.1186/s12974-021-02190-3.

[129]

T. Zhou, L. Liu, Q. Wang, et al., Naringenin alleviates cognition deficits in high-fat diet-fed SAMP8 mice, J. Food Biochem. 44(9) (2020) e13375. https://doi.org/10.1111/jfbc.13375.

[130]

D. Trinh, A.R. Israwi, L.R. Arathoon, et al., The multi-faceted role of mitochondria in the pathology of Parkinson’s disease, J. Neurochem. 156(6) (2021) 715-752. https://doi.org/10.1111/jnc.15154.

[131]

D.D. Li, G.Q. Wang, Q. Wu, et al., Dendrobium nobile lindl alkaloid attenuates 6-OHDA-induced dopamine neurotoxicity, Biotechnol. Appl. Biochem. 68 (2020) 1501-1507. https://doi.org/10.1002/bab.2071.

[132]

J.J. Feng, G. Li, Z.Q. Kou, et al., Determination of chrysotoxine in rat plasma by liquid chromatography-tandem mass spectrometry and its application to a rat pharmacokinetic study, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 967 (2014) 57-62. https://doi.org/10.1016/j.jchromb.2014.07.011.

[133]

N. Bhummaphan, V. Pongrakhananon, B. Sritularak, et al., Cancer stem cell-suppressing activity of chrysotoxine, a bibenzyl from Dendrobium pulchellum, J. Pharmacol. Exp. Ther. 364(2) (2018) 332-346. https://doi.org/10.1124/jpet.117.244467.

[134]

J.X. Song, P.C. Shaw, C.W. Sze, et al., Chrysotoxine, a novel bibenzyl compound, inhibits 6-hydroxydopamine induced apoptosis in SH-SY5Y cells via mitochondria protection and NF-κB modulation, Neurochem. Int. 57(6) (2010) 676-689. https://doi.org/10.1016/j.neuint.2010.08.007.

[135]

H. Chen, X. Li, Y. Xu, et al., Study on the polar extracts of Dendrobium nobile, D. officinale, D. Loddigesii, and flickingeria fimbriata: metabolite identification, content evaluation, and bioactivity assay, Molecules 23(5) (2018) 1185. https://doi.org/10.3390/molecules23051185.

[136]

S. Kesh, R.R. Kannan, A. Balakrishnan, Naringenin alleviates 6-hydroxydopamine induced Parkinsonism in SHSY5Y cells and zebrafish model, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 239 (2021) 108893. https://doi.org/10.1016/j.cbpc.2020.108893.

[137]

I. Cho, H.O. Song, J.H. Cho, Flavonoids mitigate neurodegeneration in aged Caenorhabditis elegans by mitochondrial uncoupling, Food Sci. Nutr. 8(12) (2020) 6633-6642. https://doi.org/10.1002/fsn3.1956.

[138]

S.Q. Su, H. Jiang, Q.M. Li, et al., Study on chemical constituents of Dendrobium huoshanense stems and their anti-inflammatory activity, Zhongguo Zhong Yao Za Zhi 45(14) (2020) 3452-3458. https://doi.org/10.19540/j.cnki.cjcmm.20200423.201.

[139]

J. Silva, C. Alves, A. Martins, et al., Loliolide, a new therapeutic option for neurological diseases? in vitro neuroprotective and anti-inflammatory activities of a monoterpenoid lactone isolated from Codium tomentosum, Int. J. Mol. Sci. 22(4) (2021) 1888. https://doi.org/10.3390/ijms22041888.

[140]

Z. Elmazoglu, V. Ergin, E. Sahin, et al., Oleuropein and rutin protect against 6-OHDA-induced neurotoxicity in PC12 cells through modulation of mitochondrial function and unfolded protein response, Interdiscip. Toxicol. 10(4) (2018) 129-141. https://doi.org/10.1515/intox-2017-0019.

[141]

O. Guzelad, A. Ozkan, H. Parlak, et al., Protective mechanism of Syringic acid in an experimental model of Parkinson’s disease, Metab. Brain Dis. 36(5) (2021) 1003-1014. https://doi.org/10.1007/s11011-021-00704-9.

[142]

R. Abuthawabeh, A.N. Abuirmeileh, K.H. Alzoubi, The beneficial effect of Vanillin on 6-hydroxydopamine rat model of Parkinson’s disease, Restor. Neurol. Neurosci. 38(5) (2020) 369-373. https://doi.org/10.3233/RNN-201028.

[143]

L.Z. Li, S.S. Lei, B. Li, et al., Dendrobium officinalis flower improves learning and reduces memory impairment by mediating antioxidant effect and balancing the release of neurotransmitters in senescent rats, Comb. Chem. High Throughput. Screen 23(5) (2020) 402-410. https://doi.org/10.2174/1386207323666200407080352.

[144]

J.X. Song, P.C. Shaw, N.S. Wong, et al., Chrysotoxine, a novel bibenzyl compound selectively antagonizes MPP+, but not rotenone, neurotoxicity in dopaminergic SH-SY5Y cells, Neurosci. Lett. 521(1) (2012) 76-81. https://doi.org/10.1016/j.neulet.2012.05.063.

[145]

M. Sugumar, M. Sevanan, S. Sekar, Neuroprotective effect of naringenin against MPTP-induced oxidative stress, Int. J. Neurosci. 129(6) (2019) 534-539. https://doi.org/10.1080/00207454.2018.1545772.

[146]

N. Mubashir, R. Fatima, S. Naeem, Identification of novel phyto-chemicals from Ocimum basilicum for the treatment of Parkinson’s disease using in silico approach, Curr. Comput. Aided. Drug Des. 16(4) (2020) 420-434. https://doi.org/10.2174/1573409915666190503113617.

[147]

A.B. Enogieru, W. Haylett, D. Hiss, et al., Inhibition of γH2AX, COX-2 and regulation of antioxidant enzymes in MPP+-exposed SH-SY5Y cells pre-treated with rutin, Metab. Brain Dis. 36(7) (2021) 1-12. https://doi.org/10.1007/s11011-021-00746-z.

[148]

M.M. Khan, S.S. Raza, H. Javed, et al., Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease, Neurotox. Re. 22(1) (2012) 1-15. https://doi.org/10.1007/s12640-011-9295-2.

[149]

C. Dhanalakshmi, T. Manivasagam, J. Nataraj, et al., Neurosupportive role of Vanillin, a natural phenolic compound, on rotenone induced neurotoxicity in SH-SY5Y neuroblastoma cells, Evid. Based. Complement Alternat. Med. 2015 (2015) 1-11. https://doi.org/10.1155/2015/626028.

[150]

N. Sharma, N. Khurana, A. Muthuraman, et al., Pharmacological evaluation of Vanillic acid in rotenone-induced Parkinson’s disease rat model, Eur. J. Pharmacol. 903 (2021) 174112. https://doi.org/10.1016/j.ejphar.2021.174112.

[151]

C. Dhanalakshmi, U. Janakiraman, T. Manivasagam, et al., Vanillin attenuated behavioural impairments, neurochemical deficts, oxidative stress and apoptosis against rotenone induced rat model of Parkinson’s disease, Neurochem. Res. 41(8) (2016) 1899-1910. https://doi.org/10.1007/s11064-016-1901-5.

[152]

A.A. Abdulrahman, K. Faisal, A.A. Meshref, et al., Low-dose acute Vanillin is beneficial against harmaline-induced tremors in rats, Neurol. Res. 39(3) (2017) 264-270. https://doi.org/10.1080/01616412.2016.1275456.

[153]

M. Sugumar, M. Sevanan, S. Sekar, Neuroprotective effect of naringenin against MPTP-induced oxidative stress, Int. J. Neurosci. 129(6) (2019) 534-539. https://doi.org/10.1080/00207454.2018.1545772.

[154]

G.Q. Wang, B. Zhang, X.M. He, et al., Naringenin targets on astroglial Nrf2 to support dopaminergic neurons, Pharmacol. Res. 139 (2019) 452-459. https://doi.org/10.1016/j.phrs.2018.11.043.

[155]

J. Yan, Z. Yang, N. Zhao, et al., Gastrodin protects dopaminergic neurons via insulin-like pathway in a Parkinson’s disease model, BMC Neurosci. 20(1) (2019) 31. https://doi.org/10.1186/s12868-019-0512-x.

[156]

S. Teseo, B. Houot, K. Yang, et al., G. sinense and P. notoginseng Notoginseng extracts improve healthspan of aging flies and provide protection in A Huntington disease model, Aging Dis. 12(2) (2021) 425-440. https://doi.org/10.14336/AD.2020.0714-1.

[157]

X. Gong, S. Jiang, H. Tian, et al., Polyphenols in the fermentation liquid of Dendrobium candidum relieve intestinal inflammation in zebrafish through the intestinal microbiome-mediated immune response, Front. Immunol. 11 (2020) 1542. https://doi.org/10.3389/fimmu.2020.01542.

[158]

M. Salman, P. Sharma, M.I. Alam, et al., Naringenin mitigates behavioral alterations and provides neuroprotection against 3-nitropropinoic acid-induced Huntington’s disease like symptoms in rats, Nutr. Neurosci. 15 (2021) 1-11. https://doi.org/10.1080/1028415X.2021.1913319.

[159]

M.S. Abdelfattah, S.E.A. Badr, S.A. Lotfy, et al., Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease, Neurotox. Res. 37(1) (2020) 77-92. https://doi.org/10.1007/s12640-019-00086-y.

[160]

S. Gupta, B. Sharma, Pharmacological benefits of agomelatine and Vanillin in experimental model of Huntington’s disease, Pharmacol. Biochem. Behav. 122(1) (2014) 122-135. https://doi.org/10.1016/j.pbb.2014.03.022.

[161]

N. Jiang, L.X. Fan, Y.J. Yang, et al., Antidepressant effects of the extract of Dendrobium nobile Lindl on chronic unpredictable mild stress-induced depressive mice, Acta. Physiologica. Sinica. 69(2) (2017) 159-166. https://doi.org/10.13294/j.aps.2017.0006.

[162]

T.W. Xiong, B. Liu, Q. Wu, et al., Beneficial effects of Dendrobium nobile Lindl. alkaloids (DNLA) on anxiety and depression induced by chronic unpredictable stress in rats, Brain Res. 1771 (2021) 147647. https://doi.org/10.1016/j.brainres.2021.147647.

[163]

Y. Zhu, M. Liu, C. Cao, et al., Dendrobium officinale flos increases neurotrophic factor expression in the hippocampus of chronic unpredictable mild stress-exposed mice and in astrocyte primary culture and potentiates NGF-induced neuronal differentiation in PC12 cells, Phytother. Res. 35(5) (2021) 2665-2677. https://doi.org/10.1002/ptr.7013.

[164]

A.P. Dalmagro, A. Camargo, A.L.Severo Rodrigues, et al., Involvement of PI3K/Akt/GSK-3β signaling pathway in the antidepressant-like and neuroprotective effects of morus nigra and its major phenolic, syringic acid, Chem. Biol. Interact. 314 (2019) 108843. https://doi.org/10.1016/j.cbi.2019.108843.

[165]

C.W. Phan, P. David, K.H. Wong, et al., Uridine from pleurotus giganteus and its neurite outgrowth stimulatory effects with underlying mechanism, PLoS One 10(11) (2015) e0143004. https://doi.org/10.1371/journal.pone.0143004.

[166]

D.G. Kondo, Y.H. Sung, T.L. Hellem, et al., Open-label uridine for treatment of depressed adolescents with bipolar disorder, J. Child Adolesc. Psychopharmacol. 21(2) (2011) 171-175. https://doi.org/10.1089/cap.2010.0054.

[167]

J.H. Cho, J.H. Park, J.H. Ahn, et al., Vanillin and 4-hydroxybenzyl alcohol promotes cell proliferation and neuroblast differentiation in the dentate gyrus of mice via the increase of brain-derived neurotrophic factor and tropomyosin-related kinase B, Mol. Med. Rep. 13(4) (2016) 2949-2956. https://doi.org/10.3892/mmr.2016.4915.

[168]

J. Xu, H. Xu, Y. Liu, et al., Vanillin-induced amelioration of depression-like behaviors in rats by modulating monoamine neurotransmitters in the brain, Psychiatry. Res. 225(3) (2015) 509-514. https://doi.org/10.1016/j.psychres.2014.11.056.

[169]

A.S. Olugbemide, B. Ben-Azu, A.G. Bakre, et al., Naringenin improves depressive- and anxiety-like behaviors in mice exposed to repeated hypoxic stress through modulation of oxido-inflammatory mediators and NF-κB/BDNF expressions, Brain Res. Bull. 169 (2021) 214-227. https://doi.org/10.1016/j.brainresbull.2020.12.003.

[170]

G. Li, Y. Ma, J. Ji, et al., Effects of gastrodin on 5-HT and neurotrophic factor in the treatment of patients with post-stroke depression, Exp. Ther. Med. 16(6) (2018) 4493-4498. https://doi.org/10.3892/etm.2018.6760.

[171]

S. Singh, T.G. Singh, A.K. Rehni, et al., Reviving mitochondrial bioenergetics: a relevant approach in epilepsy, Mitochondrion. 58 (2021) 213-226. https://doi.org/10.1016/j.mito.2021.03.009.

[172]

L. Zhang, H. Peng, J. Xu, et al., Effects of Dendrobium officinale polysaccharides on brain inflammation of epileptic rats, Int. J. Polym. Sci. 2019(1) (2019) 1-6. https://doi.org/10.1155/2019/9058161.

[173]

Y.S. Cho, W.S. Song, S.H. Yoon, et al., Syringaresinol suppresses excitatory synaptic transmission and picrotoxin-induced epileptic activity in the hippocampus through presynaptic mechanisms, Neuropharmacology 131 (2018) 68-82. https://doi.org/10.1016/j.neuropharm.2017.12.014.

[174]

L. Chen, X. Liu, H. Wang, et al., Gastrodin attenuates pentylenetetrazole-induced seizures by modulating the mitogen-activated protein kinase-associated inflammatory responses in mice, Neurosci. Bull. 33(3) (2017) 264-272. https://doi.org/10.1007/s12264-016-0084-z.

[175]

Y. Kung, M.Y. Hsiao, S.M. Yang, et al., A single low-energy shockwave pulse opens blood-cerebrospinal fluid barriers and facilitates gastrodin delivery to alleviate epilepsy, Ultrason. Sonochem. 78 (2021) 105730. https://doi.org/10.1016/j.ultsonch.2021.105730.

[176]

J. Dang, Y.N. Paudel, X.L. Yang, et al., Schaftoside suppresses pentylenetetrazol-induced seizures in zebrafish via suppressing apoptosis, modulating inflammation, and oxidative stress, ACS Chem. Neurosci. 12(13) (2021) 2542-2552. https://doi.org/10.1021/acschemneuro.1c00314.

[177]

D.C. Rueda, A. Schöffmann, M. de Mieri, et al., Identification of dihydrostilbenes in Pholidota chinensis as a new scaffold for GABAA receptor modulators, Bioorg. Med. Che. 22 (2014) 1276-1284. https://doi.org/10.1016/j.bmc.2014.01.008.

[178]

J.H. Ha, D.U. Lee, J.T. Lee, et al., 4-Hydroxybenzaldehyde from Gastrodia elata B1. is active in the antioxidation and GABAergic neuromodulation of the rat brain, J. Ethnopharmacol. 73(1/2) (2000) 329-333. https://doi.org/10.1016/s0378-8741(00)00313-5.

[179]

C.E. Geisler, S. Ghimire, S.M. Bruggink, et al., A critical role of hepatic GABA in the metabolic dysfunction and hyperphagia of obesity, Cell Rep. 35(13) (2021) 109301. https://doi.org/10.1016/j.celrep.2021.109301.

[180]

S.E. Khoshnam, Y. Farbood, H.F. Moghaddam, et al., Vanillic acid attenuates cerebral hyperemia, blood-brain barrier disruption and anxiety-like behaviors in rats following transient bilateral common carotid occlusion and reperfusion, Metab. Brain Dis. 33(3) (2018) 785-793. https://doi.org/10.1007/s11011-018-0187-5.

[181]

X. Wang, S. Li, J. Ma, et al., Effect of gastrodin on early brain injury and neurological outcome after subarachnoid hemorrhage in rats, Neurosci. Bull. 35(3) (2019) 461-470. https://doi.org/10.1007/s12264-018-00333-w.

[182]

G. Hao, Y. Dong, R. Huo, et al., Rutin inhibits neuroinflammation and provides neuroprotection in an experimental rat model of subarachnoid hemorrhage, possibly through suppressing the RAGE-NF-κB inflammatory signaling pathway, Neurochem. Res. 41(6) (2016) 1496-1504. https://doi.org/10.1007/s11064-016-1863-7.

[183]

E. Iglesias, M.P. Bayona-Bafaluy, A. Pesini, et al., Uridine prevents negative effects of OXPHOS xenobiotics on dopaminergic neuronal differentiation, Cells 8(11) (2019) 1407. https://doi.org/10.3390/cells8111407.

[184]

X. Fu, S. Chen, X. Wang, et al., Dendrobium nobile lindl. alkaloids alleviate Mn-induced neurotoxicity via PINK1/Parkin-mediated mitophagy in PC12 cells, Biochem. Biophys. Rep. 26 (2021) 100877. https://doi.org/10.1016/j.bbrep.2020.100877.

[185]

C.M. Liu, Z.K. Tian, Y.J. Zhang, et al., Effects of gastrodin against lead-induced brain injury in mice associated with the Wnt/Nrf2 pathway, Nutrients 12(6) (2020) 1805. https://doi.org/10.3390/nu12061805.

[186]

V.F. Salau, O.L. Erukainure, C.U. Ibeji, et al., Vanillin and Vanillic acid modulate antioxidant defense system via amelioration of metabolic complications linked to Fe2+-induced brain tissues damage, Metab. Brain Dis. 35(5) (2020) 727-738. https://doi.org/10.1007/s11011-020-00545-y.

[187]

S. Jayant, B.M. Sharma, B. Sharma, Protective effect of transient receptor potential vanilloid subtype 1 (TRPV1) modulator, against behavioral, biochemical and structural damage in experimental models of Alzheimer’s disease, Brain Res. 1642 (2016) 397-408. https://doi.org/10.1016/j.brainres.2016.04.022.

[188]

S.H. Ben, D. Driss, I. Jaballi, et al., Potassium bromate-induced changes in the adult mouse cerebellum are ameliorated by Vanillin, Biomed. Environ. Sci. 31 (2018) 115-125. https://doi.org/10.3967/bes2018.014.

[189]

Y.J. Liang, H.P. Wang, D.X. Long, et al., A metabonomic investigation of the effects of 60 days exposure of rats to two types of pyrethroid insecticides, Chem. Biol. Interact. 206(2) (2013) 302-308. https://doi.org/10.1016/j.cbi.2013.10.002.

[190]

T. Hirano, N. Suzuki, Y. Ikenaka, et al., Neurotoxicity of a pyrethroid pesticide deltamethrin is associated with the imbalance in proteolytic systems caused by mitophagy activation and proteasome inhibition, Toxicol. Appl. Pharmacol. 430 (2021) 115723. https://doi.org/10.1016/j.taap.2021.115723.

[191]

E. Ogut, R. Sekerci, G. Akcay, et al., Protective effects of syringic acid on neurobehavioral deficits and hippocampal tissue damages induced by sub-chronic deltamethrin exposure, Neurotoxicol. Teratol. 76 (2019) 106839. https://doi.org/10.1016/j.ntt.2019.106839.

Food Science and Human Wellness
Pages 2151-2174
Cite this article:
Wang F, Wan J, Liao Y, et al. Dendrobium species regulate energy homeostasis in neurodegenerative diseases: a review. Food Science and Human Wellness, 2023, 12(6): 2151-2174. https://doi.org/10.1016/j.fshw.2023.03.029

651

Views

36

Downloads

15

Crossref

9

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 12 April 2022
Revised: 17 May 2022
Accepted: 15 June 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return