AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Actinidia deliciosa as a complemental therapy against nephropathy and oxidative stress in diabetic rats

Ali Y. NaoomaWenyi KangbNora F. GhanemcMohamed M. Abdel-Daimd,eFatma M. El-Demerdashf( )
Department of Medical Laboratory Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
Department of Zoology, Faculty of Science, Kafr ElSheikh University, Kafr El Sheikh 33516, Egypt
Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
Show Author Information

Abstract

This study aimed to evaluate the anti-hyperglycemic and antioxidant role of Actinidia deliciosa (kiwifruits) aqueous extract in streptozotocin-treated rats. Animals were distributed into; control, A. deliciosa aqueous extract (ADAE; 1 g/kg orally), streptozotocin (STZ; 50 mg/kg, i.p, single dose), and STZ plus ADAE, respectively. Results showed that ADAE had high antioxidant and radical scavenging potency. Elevation in blood sugar level, lipid peroxidation (LPO), kidney function biomarkers, and perturbations in hematological parameters were observed in diabetic rats. While, enzymatic and non-enzymatic antioxidants, protein content, and alkaline phosphatase (ALP) activity declined. Furthermore, histological, immunohistochemical alpha-smooth muscle actin immunoreactivity (α-SMA-ir) and histochemical (collagen, total protein, DNA, and RNA) alterations were observed in rat kidneys. Moreover, STZ produced upregulation of inflammatory associated genes (tumor necrosis factor-alpha; TNF-α and transforming growth factor β1; TGF-β1) and triggered apoptosis by upregulating apoptotic related gene [Bcl2-associated X protein (Bax)] and downregulating anti-apoptotic related gene B-cell lymphoma-2 (Bcl-2) based on real-time PCR data. Moreover, diabetic rats administered with ADAE showed significant restoration in LPO, antioxidant status, and biochemical indices besides tissue architecture, and genes improvement regarding STZ group. Conclusively, A. deliciosa has a valuable ameliorative influence and can restore glucose levels and improve kidney dysfunction in diabetic rats.

References

[1]

I. Chikhi, H. Allali, M. El Amine Dib, et al., Antidiabetic activity of aqueous leaf extract of Atriplexhalimus L (Chenopodiaceae) in streptozotocin-induced diabetic rats, Asian Pac. J. Trop. Dis. 4 (2014) 181-184. https://doi.org/10.1016/S2222-1808(14)60501-6.

[2]

R. Mahmood, W.K. Kayani, T. Ahmed, et al., Assessment of antidiabetic potential and phytochemical profiling of Rhazya stricta root extracts, BMC Complemen Med. and Therap. 20 (2020) 293. https://doi.org/10.1186/s12906-020-03035-x.

[3]

J. Singh, P. Kakkar, Antihyperglycemic and antioxidant effect of Berberis aristata root extract and its role in regulating carbohydrate metabolism in diabetic rats, J. Ethnopharmacol. 123(1) (2009) 22-26. https://doi.org/10.1016/j.jep.2009.02.038.

[4]

L.S. Wan, C.P. Chen, Z.Q. Xiao, et al., In vitro and in vivo anti-diabetic activity of Swertia kouitchensis extract, J. Ethnopharmacol. 147(3) (2013) 622-630. https://doi.org/10.1016/j.jep.2013.03.052.

[5]

Z. Ni, L. Guo, F. Liu, et al., Allium tuberosum alleviates diabetic nephropathy by suppressing hyperglycemia-induced oxidative stress and inflammation in high fat diet/streptozotocin treated rats, Biomed. Pharmacother. 112 (2019) 108678. https://doi.org/10.1016/j.biopha.2019.108678.

[6]

P. Song, C. Sun, J. Li, et al., Tiliacora triandra extract and its major constituent attenuates diabetic kidney and testicular impairment by modulating redox imbalance and pro-inflammatory responses in rats, J. Sci. Food Agric. 101 (2020) 1598-1608. https://doi.org/10.1002/jsfa.10779.

[7]

M. Cao, Y. Li, A.C. Famurewa, et al., Antidiabetic and nephroprotective effects of polysaccharide extract from the seaweed Caulerpa racemosa in high fructose-streptozotocin induced diabetic nephropathy. diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14 (2021) 2121-2131. https://doi.org/10.2147/DMSO.S302748.

[8]

T. Szkudei, The mechanism of Alloxan and Streptozotocin action in B cells of the rat pancreas, Physiol Res. 50 (2001) 536-546.

[9]

A. Grossman, G. Johannsson, M. Quinkler, et al., Therapy of endocrine disease: perspectives on the management of adrenal insufficiency: clinical insights from across Europe, Eur. J. Endocrinol. 169(6) (2013) R165-175. https://doi.org/10.1530/EJE-13-0450.

[10]

S. Banihani, S.Swedan, Z. Alguraan, Pomegranate and type 2 diabetes, Nutrition Research 33(5) (2013) 341-348. https://doi.org/10.1016/j.nutres.2013.03.003.

[11]

P.L. Santaguida, C. Balion, D. Hunt, et al., Diagnosis, prognosis, and treatment of impaired glucose tolerance and impaired fasting glucose, Evid. Rep. Technol. Assess. (Summ) (128) (2005) 1-11.

[12]

L. Zhang, Z. Yang, Y. Zhao, et al., Renoprotective effects of Gushen Jiedu capsule on diabetic nephropathy in rats, Sci. Rep. 10 (2020) 2040. https://doi.org/10.1038/s41598-020-58781-2.

[13]

R. Xie, H. Zhang, X.Z. Wang, et al., The protective effect of betulinic acid (BA) diabetic nephropathy on streptozotocin (STZ)-induced diabetic rats, Food Funct. 8 (2017) 299-306. https://doi.org/10.1039/C6FO01601D.

[14]

Y. Xu, L. Bai, X. Chen, et al., 6-Shogaol ameliorates diabetic nephropathy through anti-inflammatory, hyperlipidemic, anti-oxidative activity in db/db mice, Biomed. Pharmacother. 97 (2018) 633-641. https://doi.org/10.1016/j.biopha.2017.10.084.

[15]

C.R. Ban, S.M. Twigg, Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers, Vasc. Health Risk Manag. 4(3) (2008) 575-596. https://doi.org/10.2147/vhrm.s1991.

[16]

S. Matsumoto, I. Koshiishi, T. Inoguchi, et al., Confirmation of superoxide generation via xanthine oxidase in streptozotocin-induced diabetic mice, Free Radic Res. 37 (2003) 767-772. https://doi.org/10.1080/1071576031000107344.

[17]

O.J. Olatunji, H. Chen, Y. Zhou, Lycium chinense leaves extract ameliorates diabetic nephropathy by suppressing hyperglycemia mediated renal oxidative stress and inflammation, Biomed. Pharmacother 102 (2018) 1145-1151. https://doi.org/10.1016/j.biopha.2018.03.037.

[18]

M. Przeor, Some common medicinal plants with antidiabetic activity, known and available in Europe (a mini-review), Pharmaceuticals 15 (2022) 65. https://doi.org/10.3390/ph15010065.

[19]

B. Hall, M. Rapinski, D. Spoor, et al., A multivariate approach to ethnopharmacology: antidiabetic plants of eeyou istchee, Front. Pharmacol. 12 (2022) 511078. https://doi.org/10.3389/fphar.2021.511078.

[20]

I. Abo-Ghanema, K.M. Sadek, Olive leaves extract restored the antioxidant perturbations in red blood cells hemolysate in streptozotocin induced diabetic rats, Int. J. Med. Bio. Sci. 6 (2012) 181-187. https://doi.org/10.5281/zenodo.1083815.

[21]

H. Choudhury, M. Pandey, C.K. Hua, et al., An update on natural compounds in the remedy of diabetes mellitus: a systematic review, J. Tradit. Complement Med. 8(3) (2017) 361-376. https://doi.org/10.1016/j.jtcme.2017.08.012.

[22]

T.K. Abouzed, M. del Mar Contreras, K.M. Sadek, et al., Red onion scales ameliorated streptozotocin-induced diabetes and diabetic nephropathy in Wistar rats in relation to their metabolite fingerprint, Diab. Res. and Clin. Pract. 140 (2018) 253-264. https://doi.org/10.1016/j.diabres.2018.03.042.

[23]

T.K. Abouzed, K.M. Sadek, E.W. Ghazy, et al., Black mulberry fruit extract alleviates streptozotocin-induced diabetic nephropathy in rats: targeting TNF-α inflammatory pathway, J. Pharm. and Pharmacol. 72 (2020) 1615-1628. https://doi.org/10.1111/jphp.13338.

[24]

F.M. El-Demerdash, H.H. Baghdadi, N.F. Ghanem, et al., Nephroprotective role of bromelain against oxidative injury induced by aluminium in rats, Environ. Toxicol. and Pharmacol. 80 (2020) 103-509. https://doi.org/10.1016/j.etap.2020.103509.

[25]

T.K. McGhie, Secondary metabolite components of kiwifruit, Adv. Food. Nutr. Res. 68 (2013) 101-124. https://doi.org/10.1016/B978-0-12-394294-4.00006-7.

[26]

L. Drummond, The composition and nutritional value of kiwifruit, Adv. Food. Nutr. Res. 68 (2013) 33-57. https://doi.org/10.1007/s00394-018-1627-z.

[27]

D.P. Richardson, J. Ansell, L.N. Drummond, The nutritional and health attributes of kiwifruit: a review, Eur. J. Nut. 57 (2018) 2659-2676 https://doi.org/10.1007/s00394-018-1627-z.

[28]

H. Leontowicz, M. Leontowicz, P. Latocha, et al., Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa ‘Hayward’ and Actinidia eriantha ‘Bidan’, Food Chem. 196 (2016) 281-291. https://doi.org/10.1016/j.foodchem.2015.08.127.

[29]

T. Ma, X. Sun, J. Zhao, et al., Nutrient compositions and antioxidant capacity of kiwifruit (Actinidia) and their relationship with flesh color and commercial value, Food Chem. 218 (2017) 294-304. https://doi.org/10.1016/j.foodchem.2016.09.081.

[30]

E. Köksal, İ. Gülçin, Antioxidant activity of cauliflower (Brassica oleracea L.), Turkish J. Agr. Fores. 32 (2008) 65-78.

[31]

V. Fogliano, V. Verde, G. Randazzo, et al., Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines, J. Agr. Food Chem. 47 (1999) 1035-1040. https://doi.org/10.1021/jf980496s.

[32]

O. Talaz, İ. Gülçin, S. Göksu, et al., Antioxidant activity of 5,10-dihydroindeno[1,2-b]indoles containing substituents on dihydroindeno part, Bioorganic & Med. Chem. 17 (2009) 6583-6589. https://doi.org/10.1016/j.bmc.2009.07.077.

[33]

D. Cheng, B. Liang, Y. Li, Antihyperglycemic effect of Ginkgo biloba extract in streptozotocin-induced diabetes in rats, BioMed. Res. International 2013 (2013)162724.

[34]

G. Soren, M. Sarita, T. Prathyusha, Antidiabetic activity of Actinidia deliciosa fruit in alloxan induced diabetic rats, The Pharma Innovation 5 (2016) 31.

[35]

H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem. 95 (1979) 351-358. https://doi.org/10.1016/0003-2697(79)90738-3.

[36]

V. Velikova, I. Yordanov, A. Edreva, Oxidative stress and some antioxidant systems in acid rain-treated bean plants, Plant Sci. 151 (2000) 59-66.

[37]

G.L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82 (1959) 70-77.

[38]

H.P. Misra, I. Fridovich, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem. 247 (1972) 3170-3175.

[39]

H. Aebi, Catalase in vitro, Methods Enzymol. 105 (1984) 121-126.

[40]

W.H. Habig, M.J. Pabst, W.B. Jakoby, Glutathione S-transferases. the first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249 (1974) 7130-7139.

[41]

D.G. Hafeman, R.A. Sunde, W.G. Hoekstra, Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat, J. Nutr. 104 (1974) 580-587. https://doi.org/10.1093/jn/104.5.580.

[42]

G. Bayramoglu, H. Senturk, A. Bayramoglu, et al., Carvacrol partially reverses symptoms of diabetes in STZ induced diabetic rats, Cytotechnology 66(2) (2014) 251-257. https://doi.org/10.1007/s10616-013-9563-5.

[43]

G.S. Arun, K.G. Ramesh, Improvement of insulin sensitivity by perindopril in spontaneously hypertensive and streptozotocin-diabetic rats, Ind. J. Pharmacol. 34 (2002) 156-164.

[44]

I.J. Chigozie, I.C. Chidinma, Positive moderation of the hematology, plasma biochemistry and ocular indices of oxidative stress in alloxan-induced diabetic rats, by an aqueous extract of the leaves of Sansevieria liberica gerome and labroy, Asian Pacific. J. Trop. Med. 6 (2013) 27-36.https://doi.org/10.1016/S1995-7645(12)60196-5.

[45]

M.K. Hossain, A. Abdal Dayem, J. Han, et al., Molecular mechanisms of the anti-obesity and antidiabetic properties of flavonoids, Int. J. Mol. Sci. 17(4) (2016) 569. https://doi.org/10.3390/ijms17040569.

[46]

M.C. Kahya, M. Nazıroglu, I.S. Övey, Modulation of diabetes-induced oxidative stress, apoptosis, and Ca2+ entry through TRPM2 and TRPV1 channels in dorsal root ganglion and hippocampus of diabetic rats by melatonin and selenium, Mol. Neurobiol. 54 (2016) 1-16. https://doi.org/10.1007/s12035-016-9727-3.

[47]

E.Sözbir, M. Nazıroglu, Diabetes enhances oxidative stress-induced TRPM2 channel activity and its control by N-acetylcysteine in rat dorsal root ganglion and brain, Metab. Brain Dis. 31(2) (2016) 385-393. https://doi.org/10.1007/s11011-015-9769-7.

[48]

D. Taubert, T. Breitenbach, A. Lazar, et al., Reaction rate constants of superoxide scavenging by plant antioxidants, Free Rad. Biol. & Med. 35 (2003) 1599-1607. https://doi.org/10.1016/j.freeradbiomed.2003.09.005.

[49]

T. Peerapatdit, A.Likidlilid, N.Patchanans, et al., Antioxidant status and lipid peroxidation products in patients of type 1 diabetes mellitus, J. Med. Assoc. Thai. 89 (2006) 141-146.

[50]

M.M. Sklavos, S. Bertera, H.M. Tse, et al., Redox modulation protects islets from transplant-related injury, Diabetes 59 (2012) 1731-1738.

[51]

T. Thilavech, S. Ngamukote, M. Abeywardena, et al., Protective effects of cyanidin-3-rutinoside against monosaccharides-induced protein glycation and oxidation, Int. J. Biol. Macromol. 75 (2015) 515-520. https://doi.org/10.1016/j.ijbiomac.2015.02.004.

[52]

I. Liguori, G. Russo, F. Curcio, et al., Oxidative stress, aging, and diseases, Clin. Interv. Aging 13 (2018) 757-772. https://doi.org/10.2147/CIA.S158513.

[53]

A.M. Al-Attar, F.A. Alsalmi, Effect of Olea europaea leaves extract on streptozotocin induced diabetes in male albino rats, Saudi J. Biol. Sci. 26 (2019) 118-128. https://doi.org/10.1016/j.sjbs.2017.03.002.

[54]

B. Halliwell, J.M.C. Gutteridge, Free radicals in biology and medicine, 4th Edition, Oxford University Press, New York, 2007.

[55]

S. Ghosh, S. Bhattacharyya, K. Rashid, et al., Curcumin protects rat liver from streptozotocin-induced diabetic pathophysiology by counteracting reactive oxygen species and inhibiting the activation of p53 and MAPKs mediated stress response pathways, Toxicol Reports 2 (2015) 365-376. https://doi.org/10.1016/j.toxrep.2014.12.017.

[56]

O.Coskun, M. Kanter, A. Korkmaz, et al., Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin induced oxidative stress and β-cell damage in rat pancreas, Pharmacol Res. 51 (2005) 117-123. https://doi.org/10.1016/j.phrs.2004.06.002.

[57]

O.R. Molehin, O.I. Oloyede, S.A. Adefegha, Streptozotocin-induced diabetes in rats: effects of white butterfly (Clerodendrum volubile) leaves on blood glucose levels, lipid profile and antioxidant status, Toxicol. Mech. and Methods 28 (2018)1-50. https://doi.org/10.1080/15376516.2018.1479476.

[58]

S.B. Kurup, S. Mini, Averrhoa bilimbi fruits attenuate hyperglycemia-mediated oxidative stress in streptozotocin induced diabetic rats, J. Food Drug Anal. 25 (2017) 360-368. https://doi.org/10.1016/j.jfda.2016.06.007.

[59]

M. Salahshoor, S. Roshankhah, V. Motavalian, et al., Effect of harmine on nicotine-induced kidney dysfunction in male mice, Int. J. Prev. Med. 10(1) (2019) 97. https://doi.org/10.4103/ijpvm.IJPVM_85_18.

[60]

T. Hassanalilou, L. Payahoo, P. Shahabi, et al., The protective effects of Morusnigra L. leaves on the kidney function tests and kidney and liver histological structures in streptozotocin-induced diabetic rats, Biomed. Res. 28 (2017) 6113-6118.

[61]

F.M. El-Demerdash, M.I. Yousef, N.A. El-Naga, Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats, Food Chem. Toxicol. 43(1) (2005) 57-63.‏ https://doi.org/10.1016/j.fct.2004.08.012.

[62]
M.N. Chatterjea, R. Shinde, Text book of medical biochemistry, 5th Ed, Jaypee Brothers, Medical Publishers Ltd., New Delhi, 2002, pp. 317.
[63]

C. Sotoa, J. Pérez, V. García, et al., Effect of silymarin on kidneys of rats suffering from alloxan-induced diabetes mellitus, Phytomedicine 17 (2010) 1090-1094. https://doi.org/10.1016/j.phymed.2010.04.011.

[64]

K.S. Balamash, H.M. Alkreathy, E.H.Al Gahdali, et al., Comparative biochemical and histopathological studies on the efficacy of metformin and virgin olive oil against streptozotocin-induced diabetes in sprague-dawley rats, J. Diabetes Res. 1 (2018) 4692197. https://doi.org/10.1155/2018/4692197.

[65]

T.A. Wynn, Cellular and molecular mechanisms of fibrosis, J. Pathol. 214(2) (2008) 199-210. https://doi.org/10.1002/path.2277.

[66]

Z.S. Novakovic, M.G. Durdov, L. Puljak, et al., The interstitial expression of alpha-smooth muscle actin in glomerulonephritis is associated with renal function, Med. Sci. Monit. 18 (2012) CR235-240. https://doi.org/10.12659/msm.882623.

[67]

J.Z. ALTamimi, N.A. AlFaris, A.M. AL-Farga, et al., Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a, J. Nutr. Biochem. 87 (2021) 108515s. https://doi.org/10.1016/j.jnutbio.2020.108515.

[68]

L.Fan, H. Zhang, X. Li, et al., Emodin protects hyperglycemia-induced injury in PC-12 cells by up-regulation of miR-9, Mol. Cell Endocrinol. Irel. 474 (2018) 194-200. https://doi.org/10.1016/j.mce.2018.03.009.

[69]

A. Wojdyło, P. Nowicka, J. Oszmia´ Nski, et al., Phytochemical compounds and biological effects of Actinidia fruits, J. Funct. Foods 30 (2017) 194-202.

[70]

H.Y. Li, Q. Yuan, Y.L. Yang, et al., Phenolic profiles, antioxidant capacities, and inhibitory effects on digestive enzymes of different kiwifruits, Molecules 23 (2018) 2957. https://doi.org/10.3390/molecules23112957.

[71]

M.C.M. Vissers, A.C. Carr, J.M. Pullar, et al., The bioavailability of vitamin C from kiwifruit, Adv. Food. Nutr. Res. 68 (2013) 125-147.

[72]

L.S. de Oliveira, G.R. Thomé, T.F. Lopes, et al., Effects of gallic acid on delta-aminolevulinic dehydratase activity and in the biochemical, histological and oxidative stress parameters in the liver and kidney of diabetic rats, Biomed. & Pharmacother. 84 (2016) 1291-1299. https://doi.org/10.1016/j.biopha.2016.10.021.

[73]

V. Madić, A. Petrović, M. Jušković, et al., Polyherbal mixture ameliorates hyperglycemia, hyperlipidemia and histopathological changes of pancreas, kidney and liver in a rat model of type 1 diabetes, J. Ethnopharmacol. 265 (2021) 113210. https://doi.org/10.1016/j.jep.2020.113210.

[74]

Y. Li, Y. Mai, X. Qiu, et al., Effect of long-term treatment of Carvacrol on glucose metabolism in Streptozotocin induced diabetic mice, BMC Complem. Med. and Therap. 20 (2020) 142. https://doi.org/10.1186/s12906-020-02937-0.

[75]

J.A. Monro, Kiwifruit, carbohydrate availability, and the glycemic response, Adv. Food. Nutr. Res. 68 (2013) 258-271. https://doi.org/10.1016/B978-0-12-394294-4.00014-6.

Food Science and Human Wellness
Pages 1981-1990
Cite this article:
Naoom AY, Kang W, Ghanem NF, et al. Actinidia deliciosa as a complemental therapy against nephropathy and oxidative stress in diabetic rats. Food Science and Human Wellness, 2023, 12(6): 1981-1990. https://doi.org/10.1016/j.fshw.2023.03.019

761

Views

24

Downloads

10

Crossref

9

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 25 November 2021
Revised: 04 January 2022
Accepted: 03 March 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return