AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Assessment of effectiveness of oral supplementation of isolated fiber of carrot on metabolic parameters in mature rats

Maria Rosana Ramireza,b( )Debora Manualeb,c,dJuan Carlos Yorib,c,d
Instituto Universitario de Ciencias de la Salud, Fundación Barceló, CONICET, Centeno 710, CP 3340, Santo Tome, Corrientes, Argentina
Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE) FIQ-UNL-CONICET, Parque Tecnológico Litoral Centro 3000, Santa Fe, Argentina
Facultad de Ingeniería Química, Universidad nacional del Litoral 3000, Santa Fe, Argentina

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

The present study was conducted to evaluate the metabolic effects of isolated fiber of carrot supplementation in rats. Physicochemical properties of fiber were determined. The groups were as follows: animals fed a standard diet, control group; high fiber supplementation (70 mg); low fiber supplementation (35 mg); for 12 weeks. Blood samples were collected at the time of sacrifice. The weights of heart, liver, kidneys and spleen of the experimental rats with respect to body weight were recorded. Commercial kits were used to determine serum glucose concentration, lipid profile (cholesterol, HDL-cholesterol, triglycerides), and the two main aminotransferases glutamic-oxalacetic transaminase (GOT)/glutamate-pyruvate transaminase (GPT). A histopathological assay was performed on the heart, liver, and spleen tissues of animals. Supplementation with fiber favors weight loss in female ((242.03 ± 23.73)−(197.81 ± 10.45) g); and male rats ((262.50 ± 32.21)−(213.96 ± 12.56) g) and induces a decrease in glucose levels in the supplemented animals. With the exception of total high-density lipoprotein cholesterol, the other lipid fractions decrease significantly in rats supplemented. Fiber supplementation did not induce changes in the dissected organs of the supplemented animals. In conclusion supplementation of fiber, improves glucose control, lower plasma lipid concentrations and reduced body weight in normal rats.

References

[1]

M.M. Kaczmarczyk, M.J. Miller, G.G. Freund, The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer, Metab. Clin. Exp. 61 (2012) 1058-1066. https://doi.org/10.1016/j.metabol.2012.01.017.

[2]

A.M. El-Anan, R.F.M. Ali, Hypolipidemic effect of coffee silver skin in rats fed a high-fat diet, Food Sci. Hum. Well. 7 (2018) 252-259. https://doi.org/10.1016/j.fshw.2018.10.005.

[3]

S.A. Moorhead, R.W. Welch, M. Barbara, et al., The effects of the fibre content and physical structure of carrots on satiety and subsequent intakes when eaten as part of a mixed meal, Br. J. Nutr. 96 (2006) 587-595. https://doi.org/10.1079/BJN20061790.

[4]

S.J.M. Svanberg, E.M. Nyman, R. Andersson, et al., Effects of boiling and storage on dietary fiber and digestible carbohydrates in various cultivars of carrots, J. Sci. Food Agric. 73 (1997) 245-254. https://doi.org/10.1002/(SICI)1097-0010(199702)73:2<245::AID-JSFA716>3.0.CO;2-P.

[5]

P. Chantaro, S. Devahastin, N. Chiewchan, Production of antioxidant high dietary fiber powder from carrot peels, LWT Food Science and Technology 4 (2008) 1987-1994. https://doi.org/10.1016/j.lwt.2007.11.013.

[6]

D. Zhang, Y. Hamauzu, Phenolic compounds and their antioxidant properties in different tissues of carrots (Daucus carota L.), JFAE, 2 (2004) 95-100.

[7]

R. Dong, S. Liu, Y. Zheng, et al., Release and metabolism of bound polyphenols from carrot dietary fiber and their potential activity under in vitro digestion and colonic fermentation, Food Funct. 11 (2020) 1-42. https://doi.org/10.1039/D0FO00975J.

[8]

A. Clementz, P.A. Torresi, J.S. Molli, et al., Novel method for valorization of by-products from carrot discards, LWT-Food Science and Technology 100 (2019) 374-380. https://doi.org/10.1016/j.lwt.2018.10.085.

[9]

S. Liu, M.Y. Jia, J.J. Chen, et al., Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber, Food Hydrocoll. 93 (2019) 284-292. https://doi.org/10.1016/j.foodhyd.2019.02.047.

[10]

S. Liu, Q. Yu, H. Huang, et al., The effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber in vivo and in vitro, Food Funct. 11 (2020) 748-758. https://doi.org/10.1039/c9fo02277e.

[11]

N.R. Aimaretti, C.V. Ybalo, M.L. Rojas, et al., Production of bioethanol from carrot discards, Biological Source Technology 123 (2012) 727-732. https://doi.org/10.1016/j.biortech.2012.08.035.

[12]

N. Aimaretti, C. Ybalo, Valorization of carrot and yeast discards for the obtention of ethanol, Biomass and Bioenerg. 42 (2012) 18-23. https://doi.org/10.1016/j.biombioe.2012.03.022.

[13]

J.A. Marlett, J.L. Slavin, Position of the American Dietetic Association: Health implications of dietary fiber, J. Am. Diet Assoc. 108 (2008) 1716-1731. https://doi.org/10.1016/j.jada.2008.08.007.

[14]

A.L. Garcia, J. Garcia, S.C. Steiniger, Arabinoxylan fibre consumption improved glucose metabolism, but did not affect serum adipokines in subjects with impaired glucose tolerance, Horm. Metab. Res. 38 (2006) 761-766. https://doi.org/10.1055/s-2006-955089.

[15]

M.R. Ramirez, I. Izquierdo, M.C.B. Raseira, et al., Effect of lyophilised Vaccinium berries on memory, anxiety and locomotion in adult rats, Pharmacol. Res. 52 (2005) 457-462. https://doi.org/10.1016/j.phrs.2005.07.003.

[16]
D.S. Young, Effects of drugs on clinical laboratory tests, In AACC Press, 2001, 4th ed.
[17]
S. Frankel, Gradwohl's clinical laboratory methods and diagnostic Vol. 1 pág. 123 - Ed. por Frankel, Reitman y Sonnenwirth - (7a Ed., 1970).
[18]

P. Trinder, A simple turbidimetric method for the determination of serum cholesterol, Annals of Clinical Biochemistry 6 (1969) 165-166.

[19]
AOAC (2000). Official methods of analysis (17th ed.), Gaithersburg, MD, USA: Association of Official Analytical Chemists.
[20]

J. Robertson, F. Monredon, P. Dysseler, et al., Hydratation properties of dietary fibre and resistant starch: a european collaborative study, LWT-Food Science Technology, 33 (2000) 72-79. https://doi.org/10.1006/fstl.1999.0595.

[21]
C.F.A. Culling, Hand Book of Histopathological Techniques, 2nd edition, 1965, Butterworth, London.
[22]

N. Grigelmo-Miguel, O. Martina-Belloso, Characterization of dietary fibre from orange juice extraction, Food Res. Int. 131 (1999) 355-361. https://doi.org/10.1016/S0963-9969(98)00087-8.

[23]

R. Lucas-Gonzalez, M. Viuda Martos, J.A. Pérez-Álvarez, et al., Evaluation of particle size influence on proximate composition physicochemical, techno-functional and physio-functional properties of flours obtained from persimmon (Diospyros kaki Trumb.) coproducts, Plant Foods Hum. Nutr. 72 (2017) 67-73. https://doi.org/10.1007/s11130-016-0592-z.

[24]

J. Thebaudin, A.C. Lefebvre. Dietary fibre: natural and technological interest, Trends Food Sci. Technol. 8 (1997) 41-48.

[25]

V. Eim, S. Simal, C. Rossello, et al., Effects of addition of carrot dietary fibre on the ripening process of a dry fermented sausage (sobrassada), Meat Sci. 80 (2008) 173-182. https://doi.org/10.1016/j.meatsci.2007.11.017.

[26]

M. Eleuch, D. Bedigian, O. Roiseux, et al., Dietary fibre and fibre-rich by-products of food processing: characterization, technological functionality and commercial applications: a review, Food Chem. 124 (2011) 411-421. https://doi.org/10.1016/j.foodchem.2010.06.077.

[28]

J.L. Slavin, N.A. Greenberg, Partially hydrolyzed guar gum: clinical nutrition uses, Nutrition 19 (2003) 549-552. https://doi.org/10.1016/s0899-9007(02)01032-8.

[30]

N.C. Howarth, E. Saltzman, S.B. Roberts, Dietary fiber and weight regulation, Nutr. Rev. 59 (2001) 129-139. https://doi.org/10.1111/j.1753-4887.2001.tb07001.x.

[31]

M. Alfieri, J. Pomerleau, D.M. Grace, et al., Fiber intake of normal weight, moderately obese and severely obese subjects, Obes. Res. 3 (1995) 541-547. https://doi.org/10.1002/j.1550-8528.1995.tb00188.x.

[32]

L.H. Nelson, L.A. Tucker, Diet composition related to body fat in a multivariate study of 293 men, J. Am. Diet Assoc. 96 (1996) 771-777. https://doi.org/10.1016/S0002-8223(96)00215-5.

[33]

K. He, F.B. Hu, G.A. Colditz, et al., Changes in intake of fruits and vegetables in relation to risk of obesity and weight gain among middle-aged women, Int. J. Obes. Relat. Metab. Disord. 28 (2004) 1569-1574. https://doi.org/10.1038/sj.ijo.0802795.

[34]

S. Liu, W.C. Willett, J.E. Manson, et al., Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women, Am. J. Clin. Nutr. 87 (2003) 920-927. https://doi.org/10.1093/ajcn/78.5.920.

[35]

J.L. Slavin, Dietary fiber and body weight, Nutrition 21 (2005) 411-418. https://doi.org/10.1016/j.nut.2004.08.018.

[36]

J.W. Anderson, L.D. Allgood, J. Turner et al., Effects of psyllium on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemia, Am. J. Clin. Nutr. 70 (1999) 466-473. https://doi.org/10.1093/ajcn/70.4.466.

[37]

J.S. Choi, H. Kim, M.H. Jung, et al., Consumption of barley beta-glucan ameliorates fatty liver and insulin resistance in rats fed a high-fat diet, Mol. Nutr. Food Res. 54 (2010) 1004-1013. https://doi.org/10.1002/mnfr.200900127.

[38]

G. Livesey, R. Taylor, T. Hulshof, et al., Glycemic response and health-A systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes, Am. J. Clin. Nutr. 87 (2008) 258S-268S. https://doi.org/10.1093/ajcn/87.1.258S.

[39]

M. Chandalia, A. Garg, D. Lutjohann, et al., Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus, New Eng. J. Med. 342 (2000) 1392-1398. https://doi.org/10.1056/NEJM200005113421903.

[40]

R. Giacco, M. Parillo, A.A. Rivellese, et al., Long-term dietary treatment with increased amounts of fiber-rich low-glycemic index natural foods improves blood glucose control and reduces the number of hypoglycemic events in type 1 diabetic patients, Diabetes Care 23 (2000) 1461-1466. https://doi.org/10.2337/diacare.23.10.1461.

[41]

P. Vitaglione, A. Napolitano, V. Fogliano, Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut, Trends Food Sci. Tech. 19 (2008) 451-463. https://doi.org/10.1016/j.tifs.2008.02.005.

[42]

V. Vuksan, A.L. Jenkins, A.L. Rogovik. et al., Viscosity rather than quantity of dietary fibre predicts colesterol lowering effect in healthy individuals, Br. J. Nutr. 106 (2011) 1349-1352. https://doi.org/10.1017/S0007114511001711.

[43]

D. D’Alessio, Glucagon-like peptide 1 (GLP-1) in diabetes and aging, J Anti-Aging Med. 3 (2000) 329-333. https://doi.org/10.1089/rej.1.2000.3.329.

[44]

J. Robertson, W.G. Brydon, K. Tadesse, et al., The effect of raw carrot on serum lipids and colonic function, American Journal of Clinical Nutrition 32 (1979) 1889-1892. https://doi.org/10.1093/ajcn/32.9.1889.

[45]

P.D. Hoagland, P.E. Pfeffer, Cobinding of bile acids to carrot fiber. J. Agric. Food Chem. 35 (1987) 316-319. https://doi.org/10.1021/jf00075a007.

[46]
J.A. Marlett, Sites and mechanisms for the hypocholesterolemic actions of soluble dietary fiber sources, in: Kritchevsky D, Bonfield C, (eds). Dietary Fiber in Health and Disease, Plenum Press, 1997, pp. 109-121. https://doi.org/10.1007/978-1-4615-5967-2_13.
[47]

C. Nicolle, N. Cardinault, O. Aprikian, et al., Effect of carrot intake on cholesterol metabolism and on antioxidant status in cholesterol-fed rat, Eur. J. Nutr. 42 (2003) 254-261. https://doi.org/10.1007/s00394-003-0419-1.

[48]

C. Nicolle, G. Simon, E. Rock, et al., Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars, J. Am. Soc. Hort. Sci. 129 (2004) 523-529. https://doi.org/10.21273/JASHS.129.4.0523.

[49]

S. Chou, P. Chien, C. Chau, Particle size reduction effectively enhances the cholesterol lowering activities of carrot insoluble fiber and cellulose, J. Agric. Food Chem. 56 (2008) 10994-10998. https://doi.org/10.1021/jf802533a.

[50]

P.K. Hsu, P.J. Chien, C.H. Chen, et al., Carrot insoluble fiber-rich fraction lowers lipid and cholesterol absorption in hamsters, LWT Food Sci. Technol. 39 (2006) 337-342. https://doi.org/10.1016/j.lwt.2005.02.009.

[51]

D.J.A. Jenkins, D. Reynolds, A.R. Leeds, et al., Hypocholesterolemic action of dietary fiber unrelated to fecal bulking effect, Am. J. Clin. Nutr 32 (1979) 243-245. https://doi.org/10.1093/ajcn/32.12.2430.

[52]

E. Wisker, T.F. Schwejzer, M. Daniel, et al., Fibre-mediated physiological effects of raw and processed carrots in humans, British J. Nutr. 72 (1994) 579-599. https://doi.org/10.1079/bjn19940061.

[53]

E. Jovanovski, R. Khayyat, A. Zurbau, et al., Should viscous fiber supplements be considered in diabetes control? results from a systematic review and meta-analysis of randomized controlled trials, Diabetes Care 42 (2019) 755-766. https://doi.org/10.2337/dc18-1126.

Food Science and Human Wellness
Pages 2022-2028
Cite this article:
Ramirez MR, Manuale D, Yori JC. Assessment of effectiveness of oral supplementation of isolated fiber of carrot on metabolic parameters in mature rats. Food Science and Human Wellness, 2023, 12(6): 2022-2028. https://doi.org/10.1016/j.fshw.2023.03.016

617

Views

33

Downloads

8

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 05 January 2021
Revised: 02 February 2021
Accepted: 21 April 2021
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return