AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Sexual spores in edible mushroom: bioactive components, discharge mechanisms and effects on fruiting bodies quality

Yunting LiaYao FengaYuling ShangbHeran XuaRongrong XiaaZhenshan HouaSong PanaLi LiaYuanyuan BianaJiayi ZhuaZijian WangaGuang Xina( )
College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
Shenyang Agricultural University Library, Shenyang 110866, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Edible mushroom sexual spores have been gaining more interest due to their bioactive components and functions. Spore discharge (SD) is an important factor affecting the quality of edible mushrooms.In this review, the bioactive nutrients of sexual spores of edible mushrooms were summarized, the SD mechanism was described, and the relationship between postharvest SD and the quality of edible mushrooms was analyzed.Spores contain various bioactive nutrients that are beneficial to the human body. Mature mushrooms can actively discharge spores in a process affected by light, relative humidity, and temperature. During storage, the physiological metabolism of spore-bearing gill tissue is vigorous, promoting the release of postharvest spores and changing the nutritional value of fruiting bodies. The flavor of the fruiting bodies also varied significantly during SD. Edible mushroom sexual spores have the potential to become new raw materials for functional food and medical resources. Research on the effect of the mechanism of SD on the quality of edible mushrooms and the development of SD regulation technology may be a new trend in the quality control of edible mushrooms, which will promote the development of the edible mushroom industry.

References

[1]

D. Sande, G.P. Oliveira, M. Moura, et al., Edible mushrooms as a ubiquitous source of essential fatty acids, Food Res. Int. 125 (2019) 108524. https://doi.org/10.1016/j.foodres.2019.108524.

[2]

A. González, M. Cruz, C. Losoya, et al., Edible mushrooms as a novel protein source for functional foods, Food Funct. 11 (2020) 7400-7414. https://doi.org/10.1039/d0fo01746a.

[3]

P.C.K. Cheung, Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits, Food Sci. Hum. Wellness 2 (2013) 162-166. https://doi.org/10.1016/j.fshw.2013.08.001.

[4]

Z. Kochan, K. Jedrzejewska, J. Karbowska, Vitamin D in edible mushrooms: biosynthesis, contents, bioavailability, and nutritional significance, Postepy Hig. Med. Dosw. 73 (2019) 662-673. https://doi.org/10.5604/01.3001.0013.6282.

[5]

Z. Yin, Z. Liang, C. Li, et al., Immunomodulatory effects of polysaccharides from edible fungus: a review, Food Sci. Hum. Wellness 10 (2021) 393-400. https://doi.org/10.1016/j.fshw.2021.04.001.

[6]

A.M. Abdelshafy, T. Belwal, Z. Liang, et al., A comprehensive review on phenolic compounds from edible mushrooms: occurrence, biological activity, application and future prospective, Crit. Rev. Food Sci. Nutr. 62 (2021) 1-21. https://doi.org/10.1080/10408398.2021.1898335.

[7]

Y. Zhang, D. Wang, Y. Chen, et al., Healthy function and high valued utilization of edible fungi, Food Sci. Hum. Wellness 10 (2021) 408-420. https://doi.org/10.1016/j.fshw.2021.04.003.

[8]

T.P. Joseph, W. Chanda, A.A. Padhiar, et al., A preclinical evaluation of the antitumor activities of edible and medicinal mushrooms: a molecular insight, Integr. Cancer Ther. 17 (2018) 200-209. https://doi.org/10.1177/1534735417736861.

[9]

Y. Mingyi, T. Belwal, H.P. Devkota, et al., Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: a comprehensive review, Trends Food Sci. Technol. 92 (2019) 94-110. https://doi.org/10.1016/j.tifs.2019.08.009.

[10]

O. Taofiq, A. Martins, M.F. Barreiro, et al., Anti-inflammatory potential of mushroom extracts and isolated metabolites, Trends Food Sci. Technol. 50 (2016) 193-210. https://doi.org/10.1016/j.tifs.2016.02.005.

[11]

L. Wang, M.A. Brennan, W. Guan, et al., Edible mushrooms dietary fibre and antioxidants: effects on glycaemic load manipulation and their correlations pre-and post-simulated in vitro digestion, Food Chem. 351 (2021) 129320. https://doi.org/10.1016/j.foodchem.2021.129320.

[12]

G. Ma, W. Yang, L. Zhao, et al., A critical review on the health promoting effects of mushrooms nutraceuticals, Food Sci. Hum. Wellness 7 (2018) 125-133. https://doi.org/10.1016/j.fshw.2018.05.002.

[13]

C. Li, S. Xu, Edible mushroom industry in China: current state and perspectives, Appl. Microbiol. Biotechnol. 106 (2022) 3949-3955. https://doi.org/10.1007/s00253-022-11985-0.

[14]

M.P. Thakur, Advances in mushroom production: key to food, nutritional and employment security: a review, Indian Phytopathol. 73 (2020) 377-395. https://doi.org/10.1007/s42360-020-00244-9.

[15]

S. Maurice, G. Arnault, J. Nordén, et al., Fungal sporocarps house diverse and host-specific communities of fungicolous fungi, ISME J. 15 (2021) 1445-1457. https://doi.org/10.1038/s41396-020-00862-1.

[16]

P. Gao, T. Hirano, Z. Chen, et al., Isolation and identification of C-19 fatty acids with anti-tumor activity from the spores of Ganoderma lucidum (reishi mushroom), Fitoterapia 83 (2012) 490-499. https://doi.org/10.1016/j.fitote.2011.12.014.

[17]
A.H.R. Buller, Researches on fungi, Vol. 1, Researches on Fungi, London, 1909.
[18]

E. Dressaire, L. Yamada, B. Song, et al., Mushrooms use convectively created airflows to disperse their spores, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) 2833-2838. https://doi.org/10.1073/pnas.1509612113.

[19]

D.M. Meng, Y.X. Zhang, R. Yang, et al., Arginase participates in the methyl jasmonate-regulated quality maintenance of postharvest Agaricus bisporus fruit bodies, Postharvest Biol. Technol. 132 (2017) 7-14. https://doi.org/10.1016/j.postharvbio.2017.05.018.

[20]

A. Braaksma, D.J. Schaap, C.M.A. Schipper, Time of harvest determines the postharvest quality of the common mushroom Agaricus bisporus, Postharvest Biol. Technol. 16 (1999) 195-198. https://doi.org/10.1016/S0925-5214(99)00019-8.

[21]

L. Sun, G. Xin, Z. Hou, et al., Biosynthetic mechanism of key volatile biomarkers of harvested Lentinula edodes triggered by spore release, J. Agric. Food. Chem. 69 (2021) 9350-9361. https://doi.org/10.1021/acs.jafc.1c02410.

[22]

T. Guo, O.D. Akan, F. Luo, et al., Dietary polysaccharides exert biological functions via epigenetic regulations: advance and prospectives, Crit. Rev. Food Sci. Nutr. (2021) 1-11. https://doi.org/10.1080/10408398.2021.1944974.

[23]

J. Wang, R. Ke, S. Zhang, Breaking the sporoderm of Ganoderma lucidum spores by combining chemical reaction with physical actuation, Nat. Prod. Res. 31 (2017) 2428-2434. https://doi.org/10.1080/14786419.2017.1312394.

[24]

A. Hassainia, H. Satha, S. Boufi, Chitin from Agaricus bisporus: extraction and characterization, Int. J. Biol. Macromol. 117 (2018) 1334-1342. https://doi.org/10.1016/j.ijbiomac.2017.11.172.

[25]

H.Z. Yu, Y.F. Liu, S. Zhou, et al., Comparison of the polysaccharides from fruiting bodies, mycelia and spore powder of Ganoderma lingzhi, Mycosystema 35 (2016) 170-177. https://doi.org/10.13346/j.mycosystema.140242.

[26]

C.R. Soccol, L.Y. Bissoqui, C. Rodrigues, et al., Pharmacological properties of biocompounds from spores of the lingzhi or reishi medicinal mushroom Ganoderma lucidum (Agaricomycetes): a review, Int. J. Med. Mushrooms 18 (2016) 757-767. https://doi.org/10.1615/IntJMedMushrooms.v18.i9.10.

[27]

Y. Fu, L. Shi, K. Ding, Structure elucidation and anti-tumor activity in vivo of a polysaccharide from spores of Ganoderma lucidum (Fr.) Karst, Int. J. Biol. Macromol. 141 (2019) 693-699. https://doi.org/10.1016/j.ijbiomac.2019.09.046.

[28]

M. Song, Z.H. Li, H.S. Gu, et al., Ganoderma lucidum spore polysaccharide inhibits the growth of hepatocellular carcinoma cells by altering macrophage polarity and induction of apoptosis, J. Immunol. Res. 2021 (2021) 1-14. https://doi.org/10.1155/2021/6696606.

[29]

T. Sang, C. Guo, D. Guo, et al., Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation, Carbohydr. Polym. 256 (2021) 117594. https://doi.org/10.1016/j.carbpol.2020.117594.

[30]

Y. Xu, X. Zhang, X.H. Yan, et al., Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum, Int. J. Biol. Macromol. 135 (2019) 706-716. https://doi.org/10.1016/j.ijbiomac.2019.05.166.

[31]

D. Li, L. Gao, M. Li, et al., Polysaccharide from spore of Ganoderma lucidum ameliorates paclitaxel-induced intestinal barrier injury: Apoptosis inhibition by reversing microtubule polymerization, Biomed. Pharmacother. 130 (2020) 110539. https://doi.org/10.1016/j.biopha.2020.110539.

[32]

L.F. Zhu, Z.C. Yao, Z. Ahmad, et al., Synthesis and evaluation of herbal chitosan from ganoderma lucidum spore powder for biomedical applications, Sci. Rep. 8 (2018) 14608. https://doi.org/10.1038/s41598-018-33088-5.

[33]

H. Edwards, N. Russell, R. Weinstein, et al., Fourier transform Raman spectroscopic study of fungi, J. Raman Spectrosc. 26 (1995) 911-916. https://doi.org/10.1002/jrs.1250260843.

[34]

C. Lin, H. Zhang, L. Chen, et al., Immunoregulatory function of Dictyophora echinovolvata spore polysaccharides in immunocompromised mice induced by cyclophosphamide, Open Life Sci. 16 (2021) 620-629. https://doi.org/10.1515/biol-2021-0055.

[35]

H. Zhu, C. Cao, S. Zhang, et al., pH-control modes in a 5-L stirred-tank bioreactor for cell biomass and exopolysaccharide production by Tremella fuciformis spore, Bioresour. Technol. 102 (2011) 9175-9178. https://doi.org/10.1016/j.biortech.2011.06.086.

[36]

H. Zhu, S.J. Sun, Effect of constant glucose feeding on the production of exopolysaccharides by Tremella fuciformis spores, Appl. Biochem. Biotechnol. 152 (2009) 366-371. https://doi.org/10.1007/s12010-008-8236-x.

[37]

T. Sun, R. Wang, D. Sun, et al., High-efficiency production of Tremella aurantialba polysaccharide through basidiospore fermentation, Bioresour. Technol. 318 (2020) 124268. https://doi.org/10.1016/j.biortech.2020.124268.

[38]

Y. Liu, Y. Wang, S. Zhou, et al., Structure and chain conformation of bioactive beta-D-glucan purified from water extracts of Ganoderma lucidum unbroken spores, Int. J. Biol. Macromol. 180 (2021) 484-493. https://doi.org/10.1016/j.ijbiomac.2021.03.003.

[39]

Y. Wang, Y. Liu, H. Yu, et al., Structural characterization and immuno-enhancing activity of a highly branched water-soluble beta-glucan from the spores of Ganoderma lucidum, Carbohydr. Polym. 167 (2017) 337-344. https://doi.org/10.1016/j.carbpol.2017.03.016.

[40]

S.A. Heleno, L. Barros, A. Martins, et al., Fruiting body, spores and in vitro produced mycelium of Ganoderma lucidum from Northeast Portugal: a comparative study of the antioxidant potential of phenolic and polysaccharidic extracts, Food Res. Int. 46 (2012) 135-140. https://doi.org/10.1016/j.foodres.2011.12.009.

[41]

D.S. Mai, The effect of cellulase, microwave and ultrasonic methods on crude polysaccharides extraction from the spore of Vietnamese lingzhi (Ganoderma lucidum), Acta Hortic. (2018) 373-378. https://doi.org/10.17660/ActaHortic.2018.1213.54.

[42]

K. de Gussem, P. Vandenabeele, A. Verbeken, et al., Raman spectroscopic study of Lactarius spores (Russulales, Fungi), Spectrochim. Acta, Part A 61 (2005) 2896-2908. https://doi.org/10.1016/j.saa.2004.10.038.

[43]

A.N.D.R. Campos, M.D. Costa, M.R. Tótola, et al., Total lipid and fatty acid accumulation during basidiospore formation in the ectomycorrhizal fungus Pisolithus sp, Rev. Bras. Ciênc. Solo 32 (2008) 1531-1540. https://doi.org/10.1590/S0100-06832008000400017.

[44]

C. Cardoso, S. Favoreto Jr, L. Oliveira, et al., Oleic acid modulation of the immune response in wound healing: a new approach for skin repair, Immunobiology 216 (2011) 409-415. https://doi.org/10.1016/j.imbio.2010.06.007.

[45]

C. Carrillo Pérez, M.D.M. Cavia Camarero, S. Alonso de la Torre, Antitumor effect of oleic acid; mechanisms of action. a review, Nutr. Hosp. 27 (2012) 1860-1865. https://doi.org/10.3305/nh.2012.27.6.6010.

[46]

M.M. Salvatore, A. Elvetico, M. Gallo, et al., Fatty acids from Ganoderma lucidum spores: extraction, identification and quantification, Appl. Sci. 10 (2020) 3907. https://doi.org/10.3390/app10113907.

[47]

Y. Liu, G. Lai, Y. Guo, et al., Protective effect of Ganoderma lucidum spore extract in trimethylamine-N-oxide-induced cardiac dysfunction in rats, J. Food Sci. 86 (2021) 546-562. https://doi.org/10.1111/1750-3841.15575.

[48]

L. Li, H.J. Guo, L.Y. Zhu, et al., A supercritical-CO2 extract of Ganoderma lucidum spores inhibits cholangiocarcinoma cell migration by reversing the epithelial-mesenchymal transition, Phytomedicine 23 (2016) 491-497. https://doi.org/10.1016/j.phymed.2016.02.019.

[49]

C. Jiao, Y. Xie, H. Yun, et al., The effect of Ganoderma lucidum spore oil in early skin wound healing: interactions of skin microbiota and inflammation, Aging (Albany NY) 12 (2020) 14125-14140. https://doi.org/10.18632/aging.103412.

[50]

B. Ma, W. Ren, Y. Zhou, et al., Triterpenoids from the spores of Ganoderma lucidum, N. Am. J. Med. Sci. 3 (2011) 495-498. https://doi.org/10.4297/najms.2011.3495.

[51]

Y.J. Shi, H.X. Zheng, Z.P. Hong, et al., Antitumor effects of different Ganoderma lucidum spore powder in cell- and zebrafish-based bioassays, J. Integr. Med. 19 (2021) 177-184. https://doi.org/10.1016/j.joim.2021.01.004.

[52]

S.F. Shen, L.F. Zhu, Z. Wu, et al., Extraction of triterpenoid compounds from Ganoderma lucidum spore powder through a dual-mode sonication process, Drug Dev. Ind. Pharm. 46 (2020) 963-974. https://doi.org/10.1080/03639045.2020.1764022.

[53]

S.F. Shen, L.F. Zhu, Z. Wu, et al., Production of triterpenoid compounds from Ganoderma lucidum spore powder using ultrasound-assisted extraction, Prep. Biochem. Biotechnol. 50 (2020) 302-315. https://doi.org/10.1080/10826068.2019.1692218.

[54]

M.T. Liu, L.X. Chen, J. Zhao, et al., Ganoderma spore powder contains little triterpenoids, Chin. Med. 15 (2020) 111. https://doi.org/10.1186/s13020-020-00391-1.

[55]

J.Y. Wang, C.G. Wang, J.S. Zhang, et al., An analysis on nucleosides of spore powder produced by Ganoderma lingzhi, Mycosystema 35 (2016) 77‐85. (in Chinese). https://doi.org/10.13346/j.mycosystema.140263.

[56]

Z. Li, Y. Shi, X. Zhang, et al., Screening immunoactive compounds of Ganoderma lucidum spores by mass spectrometry molecular networking combined with in vivo zebrafish assays, Front. Pharmacol. 11 (2020) 287. https://doi.org/10.3389/fphar.2020.00287.

[57]

J. Li, X. Zhang, Y. Liu, Supercritical carbon dioxide extraction of Ganoderma lucidum spore lipids, LWT-Food Sci. Technol. 70 (2016) 16-23. https://doi.org/10.1016/j.lwt.2016.02.019.

[58]

X.F. Bao, Y. Xu, W.M. Liu, et al., Research progress in bioactive ingredients and pharmacological functions of Ganoderma lucidum spores, Science and Technology of Food Industry 41 (2020) 325-331. https://doi.org/10.13386/j.issn1002-0306.2020.06.054.

[59]

J.Y. Yin, S. Yan, S.X. Tian, Assay of amino acids in Ganoderma lucidum spore powder by pre-column derivatization HPLC, Chinese Journal of Surgery of Integrated Traditional and Western Medicine 27 (2021) 182-188. https://doi.org/10.3969/j.issn.1007-6948.2021.02.004.

[60]

H. Tanaka, T. Saikai, H. Sugawara, et al., Workplace-related chronic cough on a mushroom farm, Chest 122 (2002) 1080-1085. https://doi.org/10.1378/chest.122.3.1080.

[61]

A. Helbling, F. Gayer, W. Pichler, et al., Mushroom (Basidiomycete) allergy: diagnosis established by skin test and nasal challenge, J. Allergy Clin. Immunol. 102 (1998) 853-858. https://doi.org/10.1016/S0091-6749(98)70028-4.

[62]

E. Weryszko-Chmielewska, I. Kasprzyk, M. Nowak, et al., Health hazards related to conidia of Cladosporium-biological air pollutants in Poland, Central Europe, J. Environ. Sci. 65 (2018) 271-281. https://doi.org/10.1016/j.jes.2017.02.018.

[63]

M. Roper, A. Seminara, Mycofluidics: the fluid mechanics of fungal adaptation, Annu. Rev. Fluid Mech. 51 (2019) 511-538. https://doi.org/10.1146/annurev-fluid-122316-045308.

[64]

S.K. Bromberg, M.N. Schwalb, Isolation and characterization of temperature sensitive sporulationless mutants of the basidiomycete Schizophyllum commune, Can. J. Genet. Cytol. 19 (1977) 477-481. https://doi.org/10.1139/g77-051.

[65]

C.T. Ingold, Range in size and form of basidiospores and ascospores, Mycologist 4 (2001) 165-166. https://doi.org/10.1016/S0269-915X(01)80010-0.

[66]

A. Pringle, S.N. Patek, M. Fischer, et al., The captured launch of a ballistospore, Mycologia 97 (2005) 866-871. https://doi.org/10.3852/mycologia.97.4.866.

[67]

J.L. Stolze-Rybczynski, Y. Cui, M.H. Stevens, et al., Adaptation of the spore discharge mechanism in the basidiomycota, PLoS One 4 (2009) e4163. https://doi.org/10.1371/journal.pone.0004163.

[68]

M. Iapichino, Y.W. Wang, S. Gentry, et al., A precise relationship among Buller's drop, ballistospore, and gill morphologies enables maximum packing of spores within gilled mushrooms, Mycologia 113 (2021) 300-311. https://doi.org/10.1080/00275514.2020.1823175.

[69]

J. Husher, S. Cesarov, C.M. Davis, et al., Evaporative cooling of mushrooms, Mycologia 91 (2019) 351-352. https://doi.org/10.1080/00275514.1999.12061025.

[70]

J. Webster, R. Davey, N. Smirnoff, et al., Mannitol and hexoses are components of Buller's drop, Mycol. Res. 99 (1995) 833-838. https://doi.org/10.1016/S0953-7562(09)80737-5.

[71]

T.K. Patel, J.D. Williamson, Mannitol in plants, fungi, and plant-fungal interactions, Trends Plant Sci. 21 (2016) 486-497. https://doi.org/10.1016/j.tplants.2016.01.006.

[72]

M. Meena, V. Prasad, A. Zehra, et al., Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions, Front. Microbiol. 6 (2015) 1019. https://doi.org/10.3389/fmicb.2015.01019.

[73]

F. Liu, R.L. Chavez, S.N. Patek, et al., Asymmetric drop coalescence launches fungal ballistospores with directionality, J.R. Soc., Interface 14 (2017) 20170083. https://doi.org/10.1098/rsif.2017.0083.

[74]

M.W. Fischer, J.L. Stolze-Rybczynski, Y. Cui, et al., How far and how fast can mushroom spores fly? physical limits on ballistospore size and discharge distance in the Basidiomycota, Fungal Biol. 114 (2010) 669-675. https://doi.org/10.1016/j.funbio.2010.06.002.

[75]

X. Noblin, S. Yang, J. Dumais, Surface tension propulsion of fungal spores, J. Exp. Biol. 212 (2009) 2835-2843. https://doi.org/10.1242/jeb.029975.

[76]

F. Trail, A. Seminara, The mechanism of ascus firing-merging biophysical and mycological viewpoints, Fungal Biol. Rev. 28 (2014) 70-76. https://doi.org/10.1016/j.fbr.2014.07.002.

[77]

F. Trail, Fungal cannons: explosive spore discharge in the Ascomycota, FEMS Microbiol. Lett. 276 (2007) 12-18. https://doi.org/10.1111/j.1574-6968.2007.00900.x.

[78]

F. Trail, I. Gaffoor, S. Vogel, Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fuarium graminearum), Fungal Genet. Biol. 42 (2005) 528-533. https://doi.org/10.1016/j.fgb.2005.03.008.

[79]

K. Min, J. Lee, J.C. Kim, et al., A novel gene, ROA, is required for normal morphogenesis and discharge of ascospores in Gibberella zeae, Eukaryotic Cell 9 (2010) 1495-1503. https://doi.org/10.1128/EC.00083-10.

[80]

Z. Yu, R. Fischer, Light sensing and responses in fungi, Nat. Rev. Microbiol. 17 (2019) 25-36. https://doi.org/10.1038/s41579-018-0109-x.

[81]

D. Tisch, M. Schmoll, Light regulation of metabolic pathways in fungi, Appl. Microbiol. Biotechnol. 85 (2010) 1259-1277. https://doi.org/10.1007/s00253-009-2320-1.

[82]

Y. Sakamoto, Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi, Fungal Biol. Rev. 32 (2018) 236-248. https://doi.org/10.1016/j.fbr.2018.02.003.

[83]

T.R. Rockett, C. Kramer, Periodicity and total spore production by lignicolous basidiomycetes, Mycologia 66 (1974) 817-829. https://doi.org/10.2307/3758202.

[84]

Y. Qi, X. Sun, L. Ma, et al., Identification of two Pleurotus ostreatus blue light receptor genes (PoWC-1 and PoWC-2) and in vivo confirmation of complex PoWC-12 formation through yeast two hybrid system, Fungal Biol. 124 (2020) 8-14. https://doi.org/10.1016/j.funbio.2019.10.004.

[85]

H. Wang, X. Tong, F. Tian, et al., Transcriptomic profiling sheds light on the blue-light and red-light response of oyster mushroom (Pleurotus ostreatus), AMB Express 10 (2020) 10. https://doi.org/10.1186/s13568-020-0951-x.

[86]

S.M. Stinnett, E.A. Espeso, L. Cobeno, et al., Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light, Mol. Microbiol. 63 (2007) 242-255. https://doi.org/10.1111/j.1365-2958.2006.05506.x.

[87]

O. Bayram, S. Krappmann, M. Ni, et al., VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism, Science 320 (2008) 1504-1506. https://doi.org/10.1126/science.1155888.

[88]

M. Ni, J.H. Yu, A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans, PLoS One 2 (2007) e970. https://doi.org/10.1371/journal.pone.0000970.

[89]

V. Polizzi, A. Adams, S. de Saeger, et al., Influence of various growth parameters on fungal growth and volatile metabolite production by indoor molds, Sci. Total Environ. 414 (2012) 277-286. https://doi.org/10.1016/j.scitotenv.2011.10.035.

[90]

P. Jankowski, S. Masny, Influence of moisture on maturation rate of the Venturia inaequalis (Cooke) Wint. ascospores in central Poland, J. Plant Dis. Prot. 127 (2019) 155-163. https://doi.org/10.1007/s41348-019-00279-9.

[91]

M. Jedryczka, A. Strzelczak, A. Grinn-Gofron, et al., Advanced statistical models commonly applied in aerobiology cannot accurately predict the exposure of people to Ganoderma spore-related allergies, Agric. For. Meteorol. 201 (2015) 209-217. https://doi.org/10.1016/j.agrformet.2014.11.015.

[92]

J. Webster, R. Davey, C. Ingold, Origin of the liquid in Buller's drop, Trans. Br. Mycol. Soc. 83 (1984) 524-527. https://doi.org/10.1016/S0007-1536(84)80055-8.

[93]

W.P. Bohaychuk, R. Whitney, Environmental factors influencing basidiospore discharge in Polyporus tomentosus, Can. J. Bot. 51 (1973) 801-815. https://doi.org/10.1139/b73-100.

[94]

M.C. Leggieri, S. Decontardi, P. Battilani, Modelling the sporulation of some fungi associated with cheese, at different temperature and water activity regimes, Int. J. Food Microbiol. 278 (2018) 52-60. https://doi.org/10.1016/j.ijfoodmicro.2018.04.023.

[95]

A. Rawlings, E. O'Connor, S.C. Moody, et al., Metabolic responses of two pioneer wood decay fungi to diurnally cycling temperature, J. Ecol. 110 (2021) 68-79. https://doi.org/10.1111/1365-2745.13716.

[96]

X. Zhao, C. Yu, Y. Zhao, et al., Changes in mannitol content, regulation of genes involved in mannitol metabolism, and the protective effect of mannitol on Volvariella volvacea at low temperature, BioMed. Res. Int. 2019 (2019) 1493721. https://doi.org/10.1155/2019/1493721.

[97]

J.Y. Liu, J.L. Men, M.C. Chang, et al., iTRAQ-based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress, J. Proteomics 156 (2017) 75-84. https://doi.org/10.1016/j.jprot.2017.01.009.

[98]

M.K. Saba, K. Arzani, M. Barzegar, Postharvest polyamine application alleviates chilling injury and affects apricot storage ability, J. Agric. Food. Chem. 60 (2012) 8947-8953. https://doi.org/10.1021/jf302088e.

[99]

D. Wang, H. Huang, Y. Jiang, et al., Exogenous phytosulfokine α (PSKα) alleviates chilling injury of banana by modulating metabolisms of nitric oxide, polyamine, proline, and γ-aminobutyric acid, Food Chem. 380 (2022) 132179. https://doi.org/10.1016/j.foodchem.2022.132179.

[100]

K.X. Yang, Z.A. Xi, Y.X. Zhang, et al., Polyamine biosynthesis and distribution in different tissues of Agaricus bisporus during postharvest storage, Sci. Hortic. 270 (2020) 109457. https://doi.org/10.1016/j.scienta.2020.109457.

[101]

L. Meng, R. Zhou, J. Lin, et al., Integrated transcriptomics and nontargeted metabolomics analysis reveal key metabolic pathways in Ganoderma lucidum in response to ethylene, J. Fungi 8 (2022) 456. https://doi.org/10.3390/jof8050456.

[102]

Z. Zhang, X. Zhang, G. Xin, et al., Umami taste and its association with energy status in harvested Pleurotus geesteranus stored at different temperatures, Food Chem. 279 (2019) 179-186. https://doi.org/10.1016/j.foodchem.2018.12.010.

[103]

Y. Lin, Y. Lin, H. Lin, et al., Application of propyl gallate alleviates pericarp browning in harvested longan fruit by modulating metabolisms of respiration and energy, Food Chem. 240 (2018) 863-869. https://doi.org/10.1016/j.foodchem.2017.07.118.

[104]

A. Braaksma, P. van Der Meer, D. Schaap, Polyphosphate accumulation in the senescing mushroom Agaricus bisporus, Postharvest Biol. Technol. 8 (1996) 121-127. https://doi.org/10.1016/0925-5214(96)00066-X.

[105]

T.K. Chakraborty, N. Das, M. Mukherjee, Evidences of high carbon catabolic enzyme activities during sporulation of Pleurotus ostreatus (Florida), J. Basic Microbiol. 43 (2003) 462-467. https://doi.org/10.1002/jobm.200310275.

[106]

M. Cai, X. Liang, Y. Liu, et al., Transcriptional dynamics of genes purportedly involved in the control of meiosis, carbohydrate, and secondary metabolism during sporulation in Ganoderma lucidum, Genes 12 (2021) 504. https://doi.org/10.3390/genes12040504.

[107]

A. Braaksma, A. van Doorn, H. Kieft, et al., Morphometric analysis of ageing mushrooms (Agaricus bisporus) during postharvest development, Postharvest Biol. Technol. 13 (1998) 71-79. https://doi.org/10.1016/S0925-5214(97)00069-0.

[108]

Y. Sakamoto, K. Nakade, T. Sato, Characterization of the post-harvest changes in gene transcription in the gill of the Lentinula edodes fruiting body, Curr. Genet. 55 (2009) 409-423. https://doi.org/10.1007/s00294-009-0255-9.

[109]

J. Stefanikova, P. Martisova, M. Snirc, et al., The effect of Amanita rubescens Pers developmental stages on aroma profile, J. Fungi 7 (2021) 611. https://doi.org/10.3390/jof7080611.

[110]

B. Lu, J. Perez-Moreno, F. Zhang, et al., Aroma profile of two commercial truffle species from Yunnan and Sichuan, China: inter- and intraspecific variability and shared key compounds, Food Sci. Hum. Wellness 10 (2021) 163-173. https://doi.org/10.1016/j.fshw.2021.02.005.

[111]

T. Feng, M. Yang, B. Ma, et al., Volatile profiles of two genotype Agaricus bisporus species at different growth stages, Food Res. Int. 140 (2021) 109761. https://doi.org/10.1016/j.foodres.2020.109761.

[112]

Q. Liu, S. Hu, Z. Song, et al., Relationship between flavor and energy status in shiitake mushroom (Lentinula edodes) harvested at different developmental stages, J. Food Sci. 86 (2021) 4288-4302. https://doi.org/10.1111/1750-3841.15904.

[113]

K. Suetsugu, T. Okamoto, M. Kato, Mushroom attracts hornets for spore dispersal by a distinctive yeasty scent, Ecology 100 (2019) e02718. https://doi.org/10.1002/ecy.2718.

[114]

S. Yamaguchi, T. Yoshikawa, S. Ikeda, et al., Measurement of the relative taste intensity of some l‐α‐amino acids and 5′‐nucleotides, J. Food Sci. 36 (1971) 846-849. https://doi.org/10.1111/j.1365-2621.1971.tb15541.x.

[115]

W. Chen, W. Li, Y. Yang, et al., Analysis and evaluation of tasty components in the pileus and stipe of Lentinula edodes at different growth stages, J. Agric. Food. Chem. 63 (2015) 795-801. https://doi.org/10.1021/jf505410a.

[116]

R. Xia, X. Zhao, G. Xin, et al., Energy status regulated umami compound metabolism in harvested shiitake mushrooms (Lentinus edodes) with spores triggered to release, Food Sci. Hum. Wellness 12 (2023) 303-311. https://doi.org/10.1016/j.fshw.2022.07.020.

[117]

L. Wang, Q. Chen, J. Zhang, et al., Effect of modified atmosphere packaging materials on physicochemical and selected enzyme activities of Agaricus bernardii, J. Food Process Eng. 44 (2020) e13628. https://doi.org/10.1111/jfpe.13628.

[118]

M.J. Wagemaker, D.C. Eastwood, J. Welagen, et al., The role of ornithine aminotransferase in fruiting body formation of the mushroom Agaricus bisporus, Mycol. Res. 111 (2007) 909-918. https://doi.org/10.1016/j.mycres.2007.05.012.

[119]

K.S. Burton, The effects of storage and development on Agaricus bisporus proteases, J. Hortic. Sci. 63 (2015) 103-108. https://doi.org/10.1080/14620316.1988.11515834.

[120]

H. Donker, A. Braaksma, Changes in metabolite concentrations detected by 13C-NMR in the senescing mushroom (Agaricus bisporus), Postharvest Biol. Technol. 10 (1997) 127-134. https://doi.org/10.1016/S0925-5214(96)01298-7.

[121]

M.J. Wagemaker, D.C. Eastwood, C. van der Drift, et al., Argininosuccinate synthetase and argininosuccinate lyase: two ornithine cycle enzymes from Agaricus bisporus, Mycol. Res. 111 (2007) 493-502. https://doi.org/10.1016/j.mycres.2007.01.016.

[122]

F. Bach, C.V. Helm, M.B. Bellettini, et al., Edible mushrooms: a potential source of essential amino acids, glucans and minerals, Int. J. Food Sci. Technol. 52 (2017) 2382-2392. https://doi.org/10.1111/ijfs.13522.

[123]

B. Poeggeler, H. Robenek, M.A. Pappolla, Editorial: pharmacology of L-arginine and L-arginine-rich food, Front. Pharmacol. 12 (2021) 743788. https://doi.org/10.3389/fphar.2021.743788.

[124]

D.C. Eastwood, M.P. Challen, C. Zhang, et al., Hairpin-mediated down-regulation of the urea cycle enzyme argininosuccinate lyase in Agaricus bisporus, Mycol. Res. 112 (2008) 708-716. https://doi.org/10.1016/j.mycres.2008.01.009.

[125]

L. Li, H. Kitazawa, X. Wang, et al., Regulation of respiratory pathway and electron transport chain in relation to senescence of postharvest white mushroom (Agaricus bisporus) under high O2/CO2 controlled atmospheres, J. Agric. Food. Chem. 65 (2017) 3351-3359. https://doi.org/10.1021/acs.jafc.6b05738.

[126]

P.V. Mahajan, F.A.R. Oliveira, I. Macedo, Effect of temperature and humidity on the transpiration rate of the whole mushrooms, J. Food Eng. 84 (2008) 281-288. https://doi.org/10.1016/j.jfoodeng.2007.05.021.

[127]

K. Zhang, Y.Y. Pu, D.W. Sun, Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): a review, Trends Food Sci. Technol. 78 (2018) 72-82. https://doi.org/10.1016/j.tifs.2018.05.012.

[128]

S. Azevedo, L.M. Cunha, J.C. Oliveira, et al., Modelling the influence of time, temperature and relative humidity conditions on the mass loss rate of fresh oyster mushrooms, J. Food Eng. 212 (2017) 108-112. https://doi.org/10.1016/j.jfoodeng.2017.05.026.

[129]

G. Rux, P.V. Mahajan, M. Geyer, et al., Application of humidity-regulating tray for packaging of mushrooms, Postharvest Biol. Technol. 108 (2015) 102-110. https://doi.org/10.1016/j.postharvbio.2015.06.010.

[130]

H. Donker, H. van As, Cell water balance of white button mushrooms (Agaricus bisporus) during its post-harvest lifetime studied by quantitative magnetic resonance imaging, BBA-Gen. Subjects 1427 (1999) 287-297. https://doi.org/10.1016/S0304-4165(99)00027-6.

[131]

X. Zhao, Y. Wang, Z. Zhang, et al., Postharvest short-time partial dehydration affects shiitake mushroom (Lentinus edodes) storage quality and umami taste, Sci. Hortic. 287 (2021) 110274. https://doi.org/10.1016/j.scienta.2021.110274.

[132]
J. Flexas, J. Galmes, M. Ribas-Carbo, et al., The effects of water stress on plant respiration, Plant Respiration, Springer, 2005, pp. 85-94.
[133]
R.W. Kerrigan, A.J. Velcko, M.C. Spear, et al., Methods for production of sporeless Agaricus bisporus mushrooms, U.S. Patent No. 10 051 831, 2018.8.21.
[134]

S. Murakami, Genetic and breeding of spore deficient strains in Agrocybe cylindracea and Lentinus edodes, Mushroom Biology and Mushroom Products (1993) 63-69.

[135]

W.M. Chen, X.L. Zhang, H.M. Chai, et al., Comparative analysis of sporulating and spore-deficient strains of Agrocybe salicacola based on the transcriptome sequences, Curr. Microbiol. 71 (2015) 204-213. https://doi.org/10.1007/s00284-015-0819-5.

[136]

T. Kanda, A. Goto, K. Sawa, et al., Isolation and characterization of recessive sporeless mutants in the basidiomycete Coprinus cinereus, Mol. Gen. Genet. 216 (1989) 526-529. https://doi.org/10.1007/BF00334400.

[137]

T. Takemaru, T. Kamada, Basidiocarp development in Coprinus macrorhizus, Bot. Mag. (Tokyo) 85 (1972) 51-57. https://doi.org/10.1007/BF02489200.

[138]

K. Hasebe, S. Murakami, A. Tsuneda, Cytology and genetics of a sporeless mutant of Lentinus edodes, Mycologia 83 (1991) 354-359. https://doi.org/10.1080/00275514.1991.12026019.

[139]

M. Pandey, S. Ravishankar, Development of sporeless and low-spored mutants of edible mushroom for alleviating respiratory allergies, Curr. Sci. (2010) 1449-1453.

[140]

Y. Okuda, S. Murakami, Y. Honda, et al., An MSH4 homolog, stpp1, from Pleurotus pulmonarius is a "silver bullet" for resolving problems caused by spores in cultivated mushrooms, Appl. Environ. Microbiol. 79 (2013) 4520-4527. https://doi.org/10.1128/AEM.00561-13.

[141]

Y. Okuda, S. Murakami, T. Matsumoto, A genetic linkage map of Pleurotus pulmonarius based on AFLP markers, and localization of the gene region for the sporeless mutation, Genome 52 (2009) 438-446. https://doi.org/10.1139/g09-021.

[142]

B. Lavrijssen, J.P. Baars, L.G. Lugones, et al., Interruption of an MSH4 homolog blocks meiosis in metaphase I and eliminates spore formation in Pleurotus ostreatus, PLoS One 15 (2020) e0241749. https://doi.org/10.1371/journal.pone.0241749.

[143]

T.S. Mikosch, A.S. Sonnenberg, L.J. van Griensven, Isolation, characterization, and expression patterns of a DMC1 homolog from the basidiomycete Pleurotus ostreatus, Fungal Genet. Biol. 33 (2001) 59-66. https://doi.org/10.1006/fgbi.2001.1265.

[144]

Y. Qi, J. Li, L. Qiu, et al., Cloning and expression of a Pleurotus ostreatus sporulation-related gene (stpo1) in Escherichia coli, Acta Edulis. Fungi 23 (2016) 7-12. https://doi.org/10.16488/j.cnki.1005-9873.2016.01.002.

[145]

F. Yamasaki, T. Nakazawa, M. Sakamoto, et al., Molecular breeding of sporeless strains of Pleurotus ostreatus using a non-homologous DNA end-joining defective strain, Mycol. Prog. 20 (2021) 73-81. https://doi.org/10.1007/s11557-020-01661-w.

[146]

Y. Obatake, S. Murakami, T. Matsumoto, et al., Isolation and characterization of a sporeless mutant in Pleurotus eryngii, Mycoscience 44 (2003) 33-40. https://doi.org/10.1007/s10267-002-0074-z.

[147]

Y. Okuda, J. Ueda, Y. Obatake, et al., Construction of a genetic linkage map based on amplified fragment length polymorphism markers and development of sequence-tagged site markers for marker-assisted selection of the sporeless trait in the oyster mushroom (Pleurotus eryngii), Appl. Environ. Microbiol. 78 (2012) 1496-1504. https://doi.org/10.1128/AEM.07052-11.

Food Science and Human Wellness
Pages 2111-2123
Cite this article:
Li Y, Feng Y, Shang Y, et al. Sexual spores in edible mushroom: bioactive components, discharge mechanisms and effects on fruiting bodies quality. Food Science and Human Wellness, 2023, 12(6): 2111-2123. https://doi.org/10.1016/j.fshw.2023.03.014

731

Views

24

Downloads

15

Crossref

12

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 10 June 2022
Revised: 30 June 2022
Accepted: 28 July 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return