AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Carboxymethylation of the polysaccharide from the fermentation broth of Marasmius androsaceus and its antidepressant mechanisms

Yu Qiua,1Yan Sua,1Jia Songa( )Fangming MouaJia GouaXiaoqi GengaXinyue LiaZhiqiang NiebJianxin Wangc,dYu Zhenga( )Min Wanga( )
State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53706, USA
Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53706, USA

1 The authors contributed equally to this article.

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

To investigate the structure-activity relationship of polysaccharide and obtain a better antidepressant polysaccharide, the antidepressant-like activity of a carboxymethyl polysaccharide (C-MEPS2) subjected to submerged fermentation was systematically studied. PC12-H cell and Kunming mice were used to investigate the differences and their mechanism in the antidepressant effects of C-MEPS2 and MEPS2. Cell experiments have showed that C-MEPS2 has a better antidepressant effect than MEPS2. C-MEPS2 could exert antidepressant effects related to catecholamine synthesis with specific sites of TH, D2DR, and P-CAMKII. In addition, C-MEPS2 could repair the Res-induced damage in PC12-H cell, stabilize the mitochondrial membrane potential and regulate intracellular Ca2+ concentration, thus reducing cell apoptosis caused by RES. Antagonists common dosing experiments on animals further proved that CMEPS2 could significantly improve the antidepressant effect of derivatives without affecting the antidepressant mechanism of MEPS2. It is speculated that it may be related to carboxymethylated modification.

References

[1]

J.L. Fang, Y. Luo, S.H. Jin, et al., Ameliorative effect of anthocyanin on depression mice by increasing monoamine neurotransmitter and up-regulating BDNF expression, J Funct Foods. 66 (2020) 103757. https://doi.org/10.1016/j.jff.2019.103757.

[2]

B.S. Liu, J. Liu, M. Wang, et al., From serotonin to neuroplasticity: evolvement of theories for major depressive disorder, Front Cell Neurosci. 11 (2017) 305. https://doi.org/10.3389/fncel.2017.00305.

[3]

A.T. Getachew, B.S. Chun. Molecular modification of native coffee polysaccharide using subcritical water treatment: structural characterization, antioxidant, and DNA protecting activities, Int J Biol Macromol. 99 (2017) 555-562. https://doi.org/10.1016/j.ijbiomac.2017.03.034.

[4]

Y. Wang, G. Hou, J. Li, et al., Structure characterization, modification through carboxymethylation and sulfation, and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp., Process Biochemistry, 72 (2018) 177-187. https://doi.org/10.1016/j.procbio.2018.06.002.

[5]

J. Miao, J.M. Regenstein, J. Qiu, et al., Isolation, structural characterization and bioactivities of polysaccharides and its derivatives from Auricularia-a review, Int J Biol Macromol. 150 (2020) 102-113. https://doi.org/10.1016/j.ijbiomac.2020.02.054.

[6]

Z. Jiang, S. Wang, J. Hou, et al., Effects of carboxymethyl chitosan oligosaccharide on regulating immunologic function and inhibiting tumor growth, Carbohydr Polym, 250 (2020) 116994. https://doi.org/10.1016/j.carbpol.2020.116994.

[7]

X. Liu, X. Wang, X. Xu, et al., Purification, antitumor and anti-inflammation activities of an alkali-soluble and carboxymethyl polysaccharide CMP33 from Poria cocos, Int J Biol Macromol. 127 (2019) 39-47. https://doi.org/10.1016/j.ijbiomac.2019.01.029.

[8]

M.J. Shi, X. Wei, J. Xu, et al., Carboxymethylated degraded polysaccharides from Enteromorpha prolifera: preparation and in vitro antioxidant activity, Food Chem. 215 (2017) 76-83. https://doi.org/10.1016/j.foodchem.2016.07.151.

[9]

J. Song, G.Y. Xing, J.M. Cao, et al., Investigation of the antidepressant effects of exopolysaccharides obtained from Marasmius androsaceus fermentation in a mouse model, Mol Med Rep. 13(1) (2016) 939-946. https://doi.org/10.3892/mmr.2015.4584.

[10]

P. Goswami, S. Paul, R. Banerjee, et al., Betulinic acid induces DNA damage and apoptosis in SiHa cells, Mutat Res. Genet Toxicol Environ Mutagen. 828 (2018) 1-9. https://doi.org/10.1016/j.mrgentox.2018.02.003.

[11]

L. Zhang, M. Yang, Y. Song, et al., Antihypertensive effect of 3,3,5,5-tetramethyl-4-piperidone, a new compound extracted from Marasmius androsaceus, J Ethnopharmacol. 123(1) (2009) 34-39. https://doi.org/10.1016/j.jep.2009.02.033.

[12]

J. Song, X. Wang, Y. Huang, et al., Analgesic effects of Marasmius androsaceus mycelia ethanol extract and possible mechanisms in mice, Braz J Med Biol Res. 51(4) (2018) e7124. https://doi.org/10.1590/1414-431X20177124.

[13]

F.X. Meng, J. Song, B. Yuan, et al., Screening and optimisation of fermentation media of Marasmius androsaceus using response surface methodology, Oxid Commun. 38(2a) (2015) 1029-1038.

[14]

J. Song, X. Wang, Y. Huang, et al., Antidepressant-like effects of Marasmius androsaceus metabolic exopolysaccharides on chronic unpredictable mild stress-induced rat model, Mol. Med. Rep. 16(4) (2017) 5043-5049. https://doi.org/10.3892/mmr.2017.7145.

[15]

J. Song, X. Geng, Y. Su, et al., Structure feature and antidepressant-like activity of a novel exopolysaccharide isolated from Marasmius androsaceus fermentation broth, Int. J. Biol. Macromol. 165(Pt B) (2020) 1646-1655. https://doi.org/10.1016/j.ijbiomac.2020.10.015.

[16]

Z.J. Wang, J.H. Xie, M.Y. Shen, et al., Carboxymethylation of polysaccharide from Cyclocarya paliurus and their characterization and antioxidant properties evaluation, Carbohydr Polym. 136 (2016) 988-994. https://doi.org/10.1016/j.carbpol.2015.10.017.

[17]

M. Bhatia, M. Ahuja, Psyllium arabinoxylan: Carboxymethylation,characterization and evaluation for nanoparticulate drug delivery, Int. J. Biol. Macromol. 72 (2015) 495-501. https://doi.org/10.1016/j.ijbiomac.2014.08.051.

[18]

C. Ganesh Kumar, H.S. Joo, J.W. Choi, et al., Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450, Enzyme Microb. Tech. 34(7) (2004) 673-681. https://doi.org/10.1016/j.enzmictec.2004.03.001.

[19]

J. Sall, M. Carlsson, O. Gidlof, et al., The antimicrobial peptide LL-37 alters human osteoblast Ca2+ handling and induces Ca2+-independent apoptosis, J. Innate. Immun. 5(3) (2013) 290-300. https://doi.org/10.1159/000346587.

[20]

M. Guo, J. Zhu, T. Yang, et al., Vitamin A improves the symptoms of autism spectrum disorders and decreases 5-hydroxytryptamine (5-HT): a pilot study, Brain Res. Bull. 137 (2018) 35-40. https://doi.org/10.1016/j.brainresbull.2017.11.001.

[21]

H. Hu, H. Li, M. Han, et al., Chemical modification and antioxidant activity of the polysaccharide from Acanthopanax leucorrhizus, Carbohydr. Res. 487 (2020) 107890. https://doi.org/10.1016/j.carres.2019.107890.

[22]

M.U. Kakar, I.U. Kakar, M.Z. Mehboob, et al., A review on polysaccharides from Artemisia sphaerocephala Krasch seeds, their extraction, modification, structure, and applications, Carbohydr. Polym. 252 (2021) 117113. https://doi.org/10.1016/j.carbpol.2020.117113.

[23]

R.H.S. Westerink, A.G. Ewing. The PC12 cell as model for neurosecretion, Acta. Physiol. 192(2) (2008) 273-285. https://doi.org/10.1111/j.1748-1716.2007.01805.x.

[24]

Q. Wu, J. Song, D. Meng, et al., TPPU, a sEH inhibitor, attenuates corticosterone-induced PC12 cell injury by modulation of BDNF-TrkB pathway, J Mol Neurosci. 67(3) (2019) 364-372. https://doi.org/10.1007/s12031-018-1230-z.

[25]

B. Gao, H.L. Shi, X. Li, et al., p38 MAPK and ERK1/2 pathways are involved in the pro-apoptotic effect of notoginsenoside Ft1 on human neuroblastoma SH-SY5Y cells, Life Sci. 108(2) (2014) 63-70. https://doi.org/10.1016/j.lfs.2014.05.010.

[26]

X.D. Yao, J.M. Zhang, X.Z. Jing, et al., Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission, Pharmacol Res. 139 (2019) 314-324. https://doi.org/10.1016/j.phrs.2018.09.026.

[27]

K.X. Sun, S.F. Tang, Y.X. Hou, et al., Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling, Ebiomedicine 41 (2019) 370-383. https://doi.org/10.1016/j.ebiom.2019.02.025.

[28]

V.P. Chakka, T. Zhou. Carboxymethylation of polysaccharides: Synthesis and bioactivities, Int. J. Biol. Macromol. 165(Pt B) (2020) 2425-2431. https://doi.org/10.1016/j.ijbiomac.2020.10.178.

[29]

J. Xu, W. Liu, W. Yao, et al., Carboxymethylation of a polysaccharide extracted from Ganoderma lucidum enhances its antioxidant activities in vitro, Carbohyd. Polym. 78(2) (2009) 227-234. https://doi.org/10.1016/j.carbpol.2009.03.028.

[30]

M.F. Salvatore, T.R. Mcinnis, M.A. Cantu, et al., Tyrosine hydroxylase inhibition in substantia nigra decreases movement frequency, Mol. Neurobiol. 56(4) (2019) 2728-2740. https://doi.org/10.1007/s12035-018-1256-9.

[31]

P.S. D'aquila, D. Elia, A. Galistu. Role of dopamine D1-like and D2-like receptors in the activation of ingestive behaviour in thirsty rats licking for water, Psychopharmacology 236(12) (2019) 3497-3512. https://doi.org/10.1007/s00213-019-05317-w.

[32]

J.S. Hyun, T.J. Bivalacqua, M.R. Baig, et al., Localization of peripheral dopamine D1 and D2 receptors in rat corpus cavernosum, BJU Int. 90(1) (2002): 105-112. https://doi.org/10.1046/j.1464-410X.2002.02789.x.

[33]

D. Ferger, J. Krieglstein. Determination of intracellular Ca2+ concentration can be a useful tool to predict neuronal damage and neuroprotective properties of drugs, Brain Research 732(1/2) (1996) 87-94. https://doi.org/10.1016/0006-8993(96)00494-5.

[34]

Y. Wang, L. Tu, Y. Li, et al., Notoginsenoside R1 alleviates oxygen-glucose deprivation/reoxygenation injury by suppressing endoplasmic reticulum calcium release via PLC, Sci. Rep. 7(1) (2017) 16226. https://doi.org/10.1038/s41598-017-16373-7.

[35]

J. Shou, A. Tran, N. Snyder, et al., Distinct roles of GluA2-lacking AMPA receptor expression in dopamine D1 or D2 receptor neurons in animal behavior, Neuroscience 398 (2019) 102-112. https://doi.org/10.1016/j.neuroscience.2018.12.002.

[36]

Y. Li, Y. Sun, J. Yang, et al., Age-dependent dopaminergic dysfunction following fetal exposure to atrazine in SD rats, Environ. Toxicol. Pharmacol. 37(3) (2014) 1275-1282. https://doi.org/10.1016/j.etap.2014.04.023.

[37]

A. Aschrafi, A. Berndt, J.A. Kowalak, et al., Angiotensin Ⅱ mediates the axonal trafficking of tyrosine hydroxylase and dopamine beta-hydroxylase mRNAs and enhances norepinephrine synthesis in primary sympathetic neurons, J. Neurochem. 150(6) (2019) 666-677. https://doi.org/10.1111/jnc.14821.

Food Science and Human Wellness
Pages 2417-2427
Cite this article:
Qiu Y, Su Y, Song J, et al. Carboxymethylation of the polysaccharide from the fermentation broth of Marasmius androsaceus and its antidepressant mechanisms. Food Science and Human Wellness, 2023, 12(6): 2417-2427. https://doi.org/10.1016/j.fshw.2023.03.009

655

Views

22

Downloads

0

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 December 2021
Revised: 25 April 2022
Accepted: 23 May 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return