AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Foodborne doping and supervision in sports

Wei ChenaXiaoyu ChengaYingnan MaaNing Chenb( )
College of Physical Education, Wuhan Sports University, Wuhan 430079, China
Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Sport Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Cases of foodborne doping are frequently reported in sports events and can cause severe consequences for athletes. The foodborne doping can be divided into natural endogenous and artificially added foods according to the sources, including anabolic agents, stimulants, diuretics, β-blockers, β2 agonists and others. In order to control foodborne doping, chromatographic technique, immunoassay, nuclear magnetic resonance, biosensor technology, pyrolytic spectroscopy, comprehensive analysis and electrochemical analysis have usually used as analytical and inspection strategies. Meanwhile, the legislation of anti-doping, the improvement of testing standard and technology, and the prevention and control of food safety, as well as the improvement of risk perception of athletes are highly necessary for achieving the effective risk control and supervision of foodborne doping, which will be beneficial for athletes, doctors and administrators to avoid the risks of foodborne doping test and reduce foodborne doping risks for the health of athletes.

References

[1]
W.A.D. Agency. World Anti-Doping Code 2021 [https://www.wada-ama.org.]
[2]

R.J. Maughan, L.M. Burke, J. Dvorak, et al., IOC consensus statement: dietary supplements and the high-performance athlete, Int. J. Sport Nutr. Exerc. Metab. 28 (2018) 104-125. https://doi.org/10.1123/ijsnem.2018-0020.

[3]

P.Z. Pearce, Sports supplements: a modern case of caveat emptor, Curr. Sports Med. Rep. 4 (2005) 171-178. https://doi.org/10.1007/s11932-005-0063-z.

[4]

R.J. Maughan, F. Depiesse, H. Geyer, The use of dietary supplements by athletes, J. Sports Sci. 25 (2007) S103-S113. https://doi.org/10.1080/02640410701607395.

[5]

World Anti-Doping Agency (WADA). Anti-doping rule violations (ADRVs) report. In., vol. 5-60. World Anti-Doping Agency (WADA). Anti-doping rule violations (ADRVs) report. Montreal: WADA; 2018: 5-60.

[6]

R.J. Maughan, P.L. Greenhaff, P. Hespel, Dietary supplements for athletes: emerging trends and recurring themes, J. Sports Sci. 29(Suppl 1) (2011) S57-S66. https://doi.org/10.1080/02640414.2011.587446.

[7]

E. Kato, Y. Inagaki, J. Kawabata, Higenamine 4'-O-β-D-glucoside in the lotus plumule induces glucose uptake of L6 cells through β2-adrenergic receptor, Bioorg. Med. Chem. 23 (2015) 3317-3321. https://doi.org/10.1016/j.bmc.2015.04.054.

[8]

A. Vernec, A. Slack, P.R. Harcourt, et al., Glucocorticoids in elite sport: current status, controversies and innovative management strategies-a narrative review, Br. J. Sports Med. 54 (2020) 8-12. https://doi.org/10.1136/bjsports-2018-100196.

[9]

S. Ahmed, M. Riaz. Quantitation of cortico-steroids as common adulterants in local drugs by HPLC, Chromatographia 31 (1991) 67-70. https://doi.org/10.1007/BF02290499.

[10]

L. Li, X. Liang, T. Xu, et al., Rapid detection of six glucocorticoids added illegally to dietary supplements by combining TLC with spot-concentrated raman scattering, Molecules 23 (2018) 1504. https://doi.org/10.3390/molecules23071504.

[11]

H.D. Cox, D. Eichner, Detection of human insulin-like growth factor-1 in deer antler velvet supplements, Rapid Commun. Mass Spectrom. 27 (2013) 2170-2178. https://doi.org/10.1002/rcm.6678.

[12]

J.M. Anderson, Evaluating the athlete's claim of an unintentional positive urine drug test, Curr. Sports Med. Rep. 10 (2011) 191-196. https://doi.org/10.1249/JSR.0b013e318224575f.

[13]

D.K.C. Chan, T.C.W. Tang, P.S. Yung, et al., Is unintentional doping real, or just an excuse? Br. J. Sports Med. 53 (2019) 978-979. https://doi.org/10.1136/bjsports-2017-097614.

[14]

M. Yonamine, P.R. Garcia, R. Moreau, Non-intentional doping in sports, Sports Medicine 34 (2004) 697-704. https://doi.org/10.2165/00007256-200434110-00001.

[15]

D.K. Chan, N. Ntoumanis, D.F. Gucciardi, et al., What if it really was an accident? The psychology of unintentional doping, Br. J. Sports Med. 50 (2016) 898-899. https://doi.org/10.1136/bjsports-2015-094678.

[16]

Z. Zhao, T. Yao, Y. Qin, et al., Clenbuterol distribution and residues in goat tissues after the repeated administration of a growth-promoting dose, J. Anal. Toxicol. 39 (2015) 465-471. https://doi.org/10.1093/jat/bkv038.

[17]

A. Prezelj, A. Obreza, S. Pecar, Abuse of clenbuterol and its detection, Curr. Med. Chem. 10 (2003) 281-290. https://doi.org/10.2174/0929867033368330.

[18]

S. Guddat, G. Fußhöller, H. Geyer, et al., Clenbuterol-regional food contamination a possible source for inadvertent doping in sports, Drug Test Anal. 2012, 4: 534-538. https://doi.org/10.1002/dta.1330.

[19]

A. Lisi, N. Hasick, R. Kazlauskas, et al., Studies of methylhexaneamine in supplements and geranium oil, Drug Test Anal. 3 (2011) 873-876. https://doi.org/10.1002/dta.392.

[20]

M. Thevis, G. Fusshöller, W. Schänzer, Zeranol: doping offence or mycotoxin? A case-related study, Drug Test Anal. 3 (2011) 777-783. https://doi.org/10.1002/dta.352.

[21]

R.W. Stephany, Hormonal growth promoting agents in food producing animals, Handb. Exp. Pharmacol. (2010) 355-367. https://doi.org/10.1007/978-3-540-79088-4_16.

[22]

H. Braun, H. Geyer, K. Koehler, Meat products as potential doping traps? Int. J. Sport Nutr. Exerc. Metab. 18 (2008) 539-542. https://doi.org/10.1123/ijsnem.18.5.539.

[23]

E.A. Applegate, L.E. Grivetti, Search for the competitive edge: a history of dietary fads and supplements, J. Nutr. 127 (1997) 869s-873s. https://doi.org/10.1093/jn/127.5.869S.

[24]

I. Garthe, R.J. Maughan, Athletes and supplements: prevalence and perspectives, Int. J. Sport Nutr. Exerc. Metab. 28 (2018) 126-138. https://doi.org/10.1123/ijsnem.2017-0429.

[25]

K.A. Erdman, T.S. Fung, P.K. Doyle-Baker, et al., Dietary supplementation of high-performance Canadian athletes by age and gender, Clin. J. Sport Med. 17 (2007) 458-464. https://doi.org/10.1097/JSM.0b013e31815aed33.

[26]

G. Savino, L. Valenti, R. D'Alisera, et al., Dietary supplements, drugs and doping in the sport society, Ann. Ig. 31 (2019) 548-555. https://doi.org/ 10.7416/ai.2019.2315.

[27]

A. Nieper, Nutritional supplement practices in UK junior national track and field athletes, Br. J. Sports Med. 39 (2005) 645-649. https://doi.org/10.1136/bjsm.2004.015842.

[28]

P. Tscholl, J.M. Alonso, G. Dollé, et al., The use of drugs and nutritional supplements in top-level track and field athletes, Am. J. Sports Med. 38 (2010) 133-140. https://doi.org/10.1177/0363546509344071.

[29]

H. Striegel, P. Simon, C. Wurster, et al., The use of nutritional supplements among master athletes, Int. J. Sports Med. 27 (2006) 236-241. https://doi.org/10.1055/s-2005-865648.

[30]

C. Tsitsimpikou, A. Tsiokanos, K. Tsarouhas, et al., Medication use by athletes at the Athens 2004 Summer Olympic Games, Clin. J. Sport Med. 19 (2009) 33-38. https://doi.org/10.1097/JSM.0b013e31818f169e.

[31]

B. Corrigan, R. Kazlauskas, Medication use in athletes selected for doping control at the Sydney Olympics (2000), Clin. J. Sport Med. 13 (2003) 33-40. https://doi.org/10.1097/00042752-200301000-00007.

[32]

G. Baltazar-Martins, D. Brito de Souza, M. Aguilar-Navarro, et al., Prevalence and patterns of dietary supplement use in elite Spanish athletes, J. Int. Soc. Sports Nutr. 16 (2019) 30. https://doi.org/10.1186/s12970-019-0296-5.

[33]

J. Xie, J. Liang, N. Chen, Autophagy-associated signal pathways of functional foods for chronic diseases, Food Sci. Human Well. 8 (2019) 25-33. https://doi.org/10.1016/j.fshw.2019.03.002.

[34]

R.J. Maughan, Contamination of dietary supplements and positive drug tests in sport, J. Sports Sci. 23 (2005) 883-889. https://doi.org/10.1080/02640410400023258.

[35]

W. van Thuyne, P. van Eenoo, F.T. Delbeke, Nutritional supplements: prevalence of use and contamination with doping agents, Nutr. Res. Rev. 19 (2006) 147-158. https://doi.org/10.1079/nrr2006122.

[36]

O. de Hon, B. Coumans, The continuing story of nutritional supplements and doping infractions, Br. J. Sports Med. 41 (2007) 800-805. https://doi.org/10.1136/bjsm.2007.037226.

[37]

H. Geyer, M.K. Parr, K. Koehler, et al., Nutritional supplements cross-contaminated and faked with doping substances, J. Mass Spectrom. 43 (2008) 892-902. https://doi.org/10.1002/jms.1452.

[38]

C. Helle, A.K. Sommer, P.V. Syversen, et al., Doping substances in dietary supplements. Tidsskr Nor. Laegeforen (2019) 139. https://doi.org/10.4045/tidsskr.18.0502.

[39]

C. Judkins, P. Prock. Supplements and inadvertent doping - how big is the risk to athletes, Med. Sport Sci. 59 (2012) 143-152. https://doi.org/10.1159/000341970.

[40]

M. Yang, H.E. Sirui, D. Zhang, et al., Study on determination of higenamine in Chinese medicinal materials by LC-MS/MS, China Measurement & Testing Technology 44 (2018) 61-65.

[41]

B. Avula, J.Y. Bae, T. Majrashi, et al., Targeted and non-targeted analysis of annonaceous alkaloids and acetogenins from Asimina and Annona species using UHPLC-QToF-MS, J. Pharm. Biomed. Anal. 159 (2018) 548-566. https://doi.org/10.1016/j.jpba.2018.07.030.

[42]

Z.J. Wang, B. Tabakoff, S.R. Levinson, et al., Inhibition of Nav1.7 channels by methyl eugenol as a mechanism underlying its antinociceptive and anesthetic actions, Acta Pharmacol. Sin. 36 (2015) 791-799. https://doi.org/10.1038/aps.2015.26.

[43]

P. Lam, F. Cheung, H.Y. Tan, et al., Hepatoprotective effects of Chinese medicinal herbs: a focus on anti-inflammatory and anti-oxidative activities, Int. J. Mol. Sci. 17 (2016) 465. https://doi.org/10.3390/ijms17040465.

[44]

M.K. Parr, M.H. Blokland, F. Liebetrau, et al., Distinction of clenbuterol intake from drug or contaminated food of animal origin in a controlled administration trial-the potential of enantiomeric separation for doping control analysis, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 34 (2017) 525-535. https://doi.org/10.1080/19440049.2016.1242169.

[45]

S. Han, T. Zhou, B. Yin, et al., A sensitive and semi-quantitative method for determination of multi-drug residues in animal body fluids using multiplex dipstick immunoassay, Anal. Chim. Acta 927 (2016) 64-71. https://doi.org/10.1016/j.aca.2016.05.004.

[46]

C.M. Kerksick, C.D. Wilborn, M.D. Roberts, et al., ISSN exercise & sports nutrition review update: research & recommendations, J. Int. Soc. Sports Nutr. 15 (2018) 38. https://doi.org/10.1186/s12970-018-0242-y.

[47]

M. Thevis, W. Schänzer, H. Geyer, et al., Traditional Chinese medicine and sports drug testing: identification of natural steroid administration in doping control urine samples resulting from musk (pod) extracts, Br. J. Sports Med. 47 (2013) 109-114. https://doi.org/10.1136/bjsports-2012-090988.

[48]
M. Parr, H. Geyer, G. Opfermann, et al., Recent advances in doping analysis, 12 (2004).
[49]

N. Baume, N. Mahler, M. Kamber, et al., Research of stimulants and anabolic steroids in dietary supplements, Scand J. Med. Sci. Sports 16 (2006) 41-48. https://doi.org/10.1111/j.1600-0838.2005.00442.x.

[50]
USADA, Supplement warning: athletes at risk from ostarine in supplements [http://www.usada.org/athlete-advisory/growing-evidence-ostarineathlete-risk.]
[51]

S. Anizan, M.A. Huestis, The potential role of oral fluid in antidoping testing, Clin. Chem. 60 (2014) 307-322. https://doi.org/10.1373/clinchem.2013.209676.

[52]

J.R. Docherty, Pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA), Br. J. Pharmacol. 154 (2008) 606-622. https://doi.org/10.1038/bjp.2008.124.

[53]

K. Deventer, K. Roels, F.T. Delbeke, et al., Prevalence of legal and illegal stimulating agents in sports, Anal. Bioanal. Chem. 401 (2011) 421-432. https://doi.org/10.1007/s00216-011-4863-0.

[54]

N.M. Mathews, Prohibited contaminants in dietary supplements, Sports Health 10 (2018) 19-30. https://doi.org/10.1177/1941738117727736.

[55]

J. Dib, C. Bosse, M. Tsivou, et al., Is heptaminol a (major) metabolite of octodrine? Drug Test Anal. 11 (2019) 1761-1763. https://doi.org/10.1002/dta.2737.

[56]

Y.B. Monakhova, M. Ilse, J. Hengen, et al., Rapid assessment of the illegal presence of 1,3-dimethylamylamine (DMAA) in sports nutrition and dietary supplements using 1H NMR spectroscopy, Drug Test Anal. 6 (2014) 944-948. https://doi.org/10.1002/dta.1677.

[57]

M.A. Elsohly, W. Gul, K.M. Elsohly, et al., Pelargonium oil and methyl hexaneamine (MHA): analytical approaches supporting the absence of MHA in authenticated Pelargonium graveolens plant material and oil, J. Anal. Toxicol. 36 (2012) 457-471. https://doi.org/10.1093/jat/bks055.

[58]

Y. Zhang, R.M. Woods, Z.S. Breitbach, et al., 1,3-Dimethylamylamine (DMAA) in supplements and geranium products: natural or synthetic? Drug Test Anal. 4 (2012) 986-990. https://doi.org/10.1002/dta.1368.

[59]

C. Di Lorenzo, E. Moro, A. Dos Santos, et al., Could 1,3 dimethylamylamine (DMAA) in food supplements have a natural origin? Drug Test Anal. 5 (2013) 116-121. https://doi.org/10.1002/dta.1391.

[60]

M.A. ElSohly, W. Gul, C. Tolbert, et al., Methylhexanamine is not detectable in Pelargonium or Geranium species and their essential oils: a multi-centre investigation, Drug Test Anal. 7 (2015) 645-654. https://doi.org/10.1002/dta.1726.

[61]

R.S. Pawar, E. Grundel, A.R. Fardin-Kia, et al., Determination of selected biogenic amines in Acacia rigidula plant materials and dietary supplements using LC-MS/MS methods, J. Pharm. Biomed. Anal. 88 (2014) 457-466. https://doi.org/10.1016/j.jpba.2013.09.012.

[62]

D. Favretto, S. Visentin, S. Scrivano, et al., Multiple incidence of the prescription diuretic hydrochlorothiazide in compounded nutritional supplements, Drug Test Anal. 11 (2019) 512-522. https://doi.org/10.1002/dta.2499.

[63]
WADA, The world anti-doping code international standard-prohibited list (https://www.wada-ama.org)
[64]

M. Kerpel dos Santos, E. Gleco, J.T. Davidson, et al., DART-MS/MS screening for the determination of 1,3-dimethylamylamine and undeclared stimulants in seized dietary supplements from Brazil, Forensic Chemistry 8 (2018) 134-145. https://doi.org/10.1016/j.forc.2018.03.005.

[65]

J. Haneef, M. Shaharyar, A. Husain, et al., Application of LC-MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fluids, J. Pharm. Anal. 3 (2013) 341-348. https://doi.org/10.1016/j.jpha.2013.03.005.

[66]

R.I. Holt, I. Erotokritou-Mulligan, P.H. Sönksen, The history of doping and growth hormone abuse in sport, Growth Horm IGF Res 19 (2009) 320-326. https://doi.org/10.1016/j.ghir.2009.04.009.

[67]

I.M. Reddy, A. Beotra, S. Jain, et al., A simple and rapid ESI-LC-MS/MS method for simultaneous screening of doping agents in urine samples, Indian J. Pharmacol. 41 (2009) 80-86. https://doi.org/10.4103/0253-7613.51347.

[68]

S. Hegstad, S. Hermansson, I. Betner, et al., Screening and quantitative determination of drugs of abuse in diluted urine by UPLC-MS/MS, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 947-948 (2014) 83-95. https://doi.org/10.1016/j.jchromb.2013.12.014.

[69]

I.I. Podolskiy, T.G. Sobolevskii, M.A. Dikunets, Determination of the origin of 19-norandrosterone in urine by gas chromatography-isotope-ratio mass spectrometry for doping control, J. Analyt. Chem. 73 (2018) 283-291. https://doi.org/10.1134/S1061934818010082.

[70]

M. Polet, W. van Gansbeke, K. Deventer, et al., Development of a sensitive GC-C-IRMS method for the analysis of androgens, Biomed. Chromatogr. 27 (2013) 259-266. https://doi.org/10.1002/bmc.2785.

[71]

J.P. Wang, X.W. Li, W. Zhang, et al., Development of immunoaffinity sample-purification for GC-MS analysis of ractopamine in swine tissue, Chromatographia 64 (2006) 613-617. https://doi.org/10.1365/s10337-006-0076-7.

[72]

C. Zhou, Y. Hang, W. Xin, et al., CdSe/ZnS quantum dots with multi-shell protection: synthesis and application in the detection of ractopamine residue in swine urine, Science of Advanced Materials 5 (2013) 285-294. https://doi.org/10.1166/sam.2013.1457.

[73]

G. Zhang, M. Chen, D. Liu, et al., Quantitative detection of β2-adrenergic agonists using fluorescence quenching by immunochromatographic assay, Analytical Methods 8 (2015) 627-631. https://doi.org/10.1039/C5AY02585K.

[74]

S.B. Wang, Y. Zhang, Y.L. Wei, et al., Fluoroimmunoassay and magnetic lateral flow immunoassay for the detection of ractopamine, Spectrosc. Spect. Anal. 35 (2015) 3100-3104. https://doi.org/10.3964/j.issn.1000-0593(2015)11-3100-05.

[75]

Y. Zhao, D. Xia, P. Ma, et al., Advances in the detection of virulence genes of Staphylococcus aureus originate from food, Food Sci. Human Well. 9 (2020) 40-44. https://doi.org/10.1016/j.fshw.2019.12.004.

[76]

Q. Xiao, J.M. Lin, Advances and applications of chemiluminescence immunoassay in clinical diagnosis and foods safety, Chinese J. Anal. Chem. 43 (2015) 929-938. https://doi.org/10.1016/S1872-2040(15)60831-3.

[77]

B. Liu, L. Wang, B. Tong, et al., Development and comparison of immunochromatographic strips with three nanomaterial labels: colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon for visual detection of salbutamol, Biosens Bioelectron 85 (2016) 337-342. https://doi.org/10.1016/j.bios.2016.05.032.

[78]

K. Wu, L. Guo, W. Xu, et al., Sulfonated polystyrene magnetic nanobeads coupled with immunochromatographic strip for clenbuterol determination in pork muscle, Talanta 129 (2014) 431-437. https://doi.org/10.1016/j.talanta.2014.06.007.

[79]

W. Chen, X.N. Li, Q. Wu, et al., Rapid and easy determination of morphine in chafing dish condiments with colloidal gold labeling based lateral flow strips, Food Sci. Human Well. 8 (2019) 40-45. https://doi.org/10.1016/j.fshw.2018.11.002.

[80]

J. Song, M. Xu, K. Zhao, et al., Flow injection chemiluminescence immunosensor for the determination of clenbuterol by immobilizing coating-antigen on carboxylic resin beads, Analyt. Methods 6 (2014) 3152-3158. https://doi.org/10.1039/C3AY42249F.

[81]

I.M. Traynor, S. Crooks, J. Bowers, et al., Detection of multi-β-agonist residues in liver matrix by use of a surface plasma resonance biosensor, Analyt. Chimica Acta. 483 (2003) 187-191. https://doi.org/10.1016/S0003-2670(03)00256-3.

[82]

N. Robinson, M. Saugy, A. Vernec, et al., The athlete biological passport: an effective tool in the fight against doping, Clin. Chem. 57 (2011) 830-832. https://doi.org/10.1373/clinchem.2011.162107.

[83]

M. Thevis, T. Kuuranne, J. Dib, et al., Do dried blood spots (DBS) have the potential to support result management processes in routine sports drug testing? Drug Test Anal. 12 (2020) 704-710. https://doi.org/10.1002/dta.2790.

[84]

H. Geyer, M.K. Parr, U. Mareck, et al., Analysis of non-hormonal nutritional supplements for anabolic-androgenic steroids-results of an international study, Int. J. Sports Med. 25 (2004) 124-129. https://doi.org/10.1055/s-2004-819955.

[85]

C.M. Judkins, P. Teale, D.J. Hall, The role of banned substance residue analysis in the control of dietary supplement contamination, Drug Test Anal. 2 (2010) 417-420. https://doi.org/10.1002/dta.149.

[86]

M.K. Parr, U. Flenker, W. Schänzer, Sports-related issues and biochemistry of natural and synthetic anabolic substances, Endocrinol. Metab. Clin. North Am. 39 (2010) 45-57. https://doi.org/10.1016/j.ecl.2009.11.004.

[87]

K.J. de Cock, F.T. Delbeke, P. van Eenoo, et al., Detection and determination of anabolic steroids in nutritional supplements, J. Pharm. Biomed. Anal. 25 (2001) 843-852. https://doi.org/10.1016/s0731-7085(01)00396-x.

[88]

K. Walpurgis, A. Thomas, H. Geyer, et al., Dietary supplement and food contaminations and their implications for doping controls, Foods 9 (2020) 1012. https://doi.org/10.3390/foods9081012.

[89]

A. Abbott, Dutch set the pace in bid to clean up diet supplements, Nature 429 (2004) 689. https://doi.org/10.1038/429689a.

Food Science and Human Wellness
Pages 1925-1936
Cite this article:
Chen W, Cheng X, Ma Y, et al. Foodborne doping and supervision in sports. Food Science and Human Wellness, 2023, 12(6): 1925-1936. https://doi.org/10.1016/j.fshw.2023.03.001

942

Views

96

Downloads

6

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 05 June 2021
Revised: 16 June 2021
Accepted: 20 June 2021
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return