AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

PluxI mutants with different promoting period and their application for quorum sensing regulated protein expression

Zhuoning CaoaZhen Liua( )Guilin ZhangaXiangzhao Maoa,b( )
College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Quorum sensing (QS) system can dynamically control the expression of proteins along with the cell growth. The promoting period of QS system has been little focused on until now. In this study, a self-induced dynamic regulated expression (SIDRE) system was constructed in Escherichia coli. To enable the system suitable for the expression of enzymes, promoter engineering was used to obtain PluxI mutants. To test the SIDRE system, alginate lyase AL493 and esterase Est7 were used as target protein for expression. The enzyme activity of alginate lyase and esterase reached 96.38% and 106.71% of the control strains containing the T7 promoter. In high-density fermentation, the activity of alginate lyase expressed by the SIDRE system with PluxI(T-38C) as promoter was 4.34-fold of that expressed by the T7 promoter. Therefore, the PluxI mutants with different promoting periods and/or different strengths show great potential in both laboratory and industrial scale for protein expression.

References

[1]

D.Y. Cheng, C.C. Jiang, J.C. Xu, et al., Characteristics and applications of alginate lyases: a review, Int. J. Biol. Macromol. 164 (2020) 1304-1320. https://doi.org/10.1016/j.ijbiomac.2020.07.199.

[2]

E.T. María, M.M. José, D.L.R. Blanca, et al., Characterization of a cold-active esterase from Lactobacillus plantarum suitable for food fermentations, J. Agric. Food Chem. 62 (2014) 5126-5132. https://doi.org/10.1021/jf501493z.

[3]

X. Gao, H.Y. Xu, Z.X. Zhu, et al., Improved production of echinenone and canthaxanthin in transgenic Nostoc sp. PCC 7120 overexpressing a heterologous crtO gene from Nostoc flagelliforme, Microbiol. Res. 236 (2020) 126455. https://doi.org/10.1016/j.micres.2020.126455.

[4]

K. Huang, B. Zhang, Z.Y. Shen, et al., Enhanced amphotericin B production by genetically engineered Streptomyces nodosus, Microbiol. Res. 242 (2021) 126623. https://doi.org/10.1016/j.micres.2020.126623.

[5]

S.Z. Tan, K.L. Prather, Dynamic pathway regulation: recent advances and methods of construction, Curr. Opin. Chem. Biol. 41 (2017) 28-35. https://doi.org/10.1016/j.cbpa.2017.10.004.

[6]

D.Y. Cheng, Z. Liu, C.C. Jiang, et al., Biochemical characterization and degradation pattern analysis of a novel PL-6 alginate lyase from Streptomyces coelicolor A3(2), Food Chem. 323 (2020) 126852. https://doi.org/10.1016/j.foodchem.2020.126852.

[7]

R. Matsushima, H. Danno, M. Uchida, et al., Analysis of extracellular alginate lyase and its gene from a marine bacterial strain, Pseudoalteromonas atlantica AR06, Appl. Microbiol. Biotechnol. 86 (2010) 567-576. https://doi.org/10.1007/s00253-009-2278-z.

[8]

G.S. Yang, H.H. Sun, R. Cao, et al., Characterization of a novel glycoside hydrolase family 46 chitosanase, Csn-BAC, from Bacillus sp. MD-5, Int. J. Biol. Macromol. 146 (2020) 518-523. https://doi.org/10.1016/j.ijbiomac.2020.01.031.

[9]

P. Lu, X.W. Gao, H. Dong, et al., Identification of a novel esterase from marine environmental genomic DNA libraries and its application in production of free all-trans-astaxanthin, J. Agric. Food. Chem. 66 (2018) 2812-2821. https://doi.org/10.1021/acs.jafc.7b06062.

[10]

R. Pinto, L. Hansen, J. Hintze, et al., Precise integration of inducible transcriptional elements (PrIITE) enables absolute control of gene expression, Nucleic Acids Res. 45 (2017) e123. https://doi.org/10.1093/nar/gkx371.

[11]

B.J. Wang, M. Barahona, M. Buck, et al., Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities, Nucleic Acids Res. 43 (2015) 1955-1964. https://doi.org/10.1093/nar/gku1388.

[12]

L. Gomes, G. Monteiro, F. Mergulhão, The impact of IPTG induction on plasmid stability and heterologous protein expression by Escherichia coli biofilms, Int. J. Mol. Sci. 21 (2020) 576. https://doi.org/10.3390/ijms21020576.

[13]

J.L. Zhang, Z. Cai, Efficient and cost-effective production of D-p-hydroxyphenylglycine by whole-cell bioconversion, Biotech. Biopro. Eng. 19 (2014) 76-82. https://doi.org/10.1007/s12257-013-0451-9.

[14]

H. Yang, J.Y. Qin, X.W. Wang, et al., Production of plant-derived anticancer precursor glucoraphanin in chromosomally engineered Escherichia coli, Microbiol. Res. 238 (2020) 126484. https://doi.org/10.1016/j.micres.2020.126484.

[15]

X.L. Shen, J. Wang, C. Li, et al., Dynamic gene expression engineering as a tool in pathway engineering, Curr. Opin. Chem. Biol. 59 (2019) 122-129. https://doi.org/10.1016/j.copbio.2019.03.019.

[16]

P. Xu, Production of chemicals using dynamic control of metabolic fluxes, Curr. Opin. Chem. Biol. 53 (2018) 12-19. https://doi.org/10.1016/j.copbio.2017.10.009.

[17]

N. Venayak, N. Anesiadis, W.R. Cluett, et al., Engineering metabolism through dynamic control, Curr. Opin. Chem. Biol. 34 (2015) 142-152. https://doi.org/10.1016/j.copbio.2014.12.022.

[18]

H. Honjo, K. Iwasaki, Y. Soma, et al., Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production, Metab. Eng. 55 (2019) 268-275. https://doi.org/10.1016/j.ymben.2019.08.007.

[19]

C. Ge, H.K. Sheng, X. Chen, et al., Quorum sensing system used as a tool in metabolic engineering, Biotech. J. 15 (2020) 1900360-1900368. https://doi.org/10.1002/biot.201900360.

[20]

R.H. Dahl, F.Z. Zhang, F. Alonso-Gutierrez, et al., Engineering dynamic pathway regulation using stress-response promoters, Nat. Biotech. 31 (2013) 1039-1046. https://doi.org/10.1038/nbt.2689.

[21]

W.C. Fuqua, S.C. Winans, E.P. Greenberg, Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulator, J. Bacteriol. 176 (1994) 269-275. https://doi.org/10.1128/jb.176.2.269-275.1994.

[22]

B.L. Bassler, M. Wright, M.R. Silverman, Multiple signaling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway, Mol. Microbiol. 13 (1994) 273-186. https://doi.org/10.1111/j.1365-2958.1994.tb00422.x.

[23]

M. Liu, X.Y. Zhu, C. Zhang, et al., LuxQ-LuxU-LuxO pathway regulates biofilm formation by Vibrio parahaemolyticus, Microbiol. Res. 250 (2021) 126791. https://doi.org/10.1016/j.micres.2021.126791.

[24]

M.J. Eickhoff, B.L. Bassler, SnapShot: bacterial quorum sensing, Cell 174 (2018) 1328-1329. https://doi.org/10.1016/j.cell.2018.08.003.

[25]

E.K. Shiner, K.P. Rumbugh, S.C. Williams, Inter-kingdom signaling: deciphering the language of acyl homoserine lactones, FEMS Microbiol. Rev. 29 (2005) 935-947. https://doi.org/10.1016/j.femsre.2005.03.001.

[26]

J. Engebrecht, K. Nelson, M. Silverman, Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri, Cell 32 (1983) 773-781. https://doi.org/10.1016/0092-8674(83)90063-6.

[27]

N.A. Whitehead, A.M.L. Barnard, H. Slater, et al., Quorum-sensing in Gram-negative bacteria, FEMS Microbiol. Rev. 25 (2001) 365-404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x.

[28]

C.M. Waters, B.L. Bassler, Quorum sensing: cell-to-cell communication in bacteria, Annu. Rev. Cell Dev. Biol. 21 (2005) 319-346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001.

[29]

E.M. Kim, H.M. Woo, T. Tian, et al., Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli, Metab. Eng. 44 (2017) 325-336. https://doi.org/10.1016/j.ymben.2017.11.004.

[30]

X.Y. He, Y. Chen, Q.F. Liang, et al., Autoinduced AND gate controls metabolic pathway dynamically in response to microbial communities and cell physiological state, ACS Synth. Biol. 6 (2016) 463-470. https://doi.org/10.1021/acssynbio.6b00177.

[31]

E.X. Wang, Y. Liu, Q. Ma, et al., Synthetic cell–cell communication in a three-species consortium for one-step vitamin C fermentation, Biotech. Let. 41 (2019) 951-961. https://doi.org/10.1007/s10529-019-02705-2.

[32]

S. Nocadello, E.F. Swennen, The new pLAI (lux regulon based auto-inducible) expression system for recombinant protein production in Escherichia coli, Microb. Cell Factories 11 (2012) 1-10. https://doi.org/10.1186/1475-2859-11-3.

[33]

A. Zargar, D.N. Quan, W.E. Bentley, Enhancing intercellular coordination: rewiring quorum sensing networks for increased protein expression through autonomous induction, ACS Synth. Biol. 5 (2016) 923-928. https://doi.org/10.1021/acssynbio.5b00261.

[34]

Y. Kimura, Y. Tashiro, K. Saito, et al., Directed evolution of Vibrio fischeri LuxR signal sensitivity, J. Biosci. Bioeng. 122 (2016) 533-538. https://doi.org/10.1016/j.jbiosc.2016.04.010.

[35]

N. Anesiadis, W.R. Cluett, R. Mahadevan, Dynamic metabolic engineering for increasing bioprocess productivity, Metab. Eng. 10 (2008) 255-266. https://doi.org/10.1016/j.ymben.2008.06.004.

[36]

J. Shong, Y.M. Huang, C. Bystroff, et al., Directed evolution of the quorum-sensing regulator EsaR for increased signal sensitivity, ACS Chem. Biol. 8 (2013) 789-795. https://doi.org/10.1021/cb3006402.

[37]

P. Hauk, K. Stephens, R. Mckay, et al., Insightful directed evolution of Escherichia coli quorum sensing promoter region of the lsrACDBFG operon: a tool for synthetic biology systems and protein expression, Nucleic Acids Res. 44 (2016) 10515-10525. https://doi.org/10.1093/nar/gkw981.

[38]

A. Gupta, I.M. Reizman, C.R. Reisch, et al., Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit, Nature Biotech. 35 (2016) 273-279. https://doi.org/10.1038/nbt.3796.

[39]

K.A. Egland, E.P. Greenberg, Quorum sensing in Vibrio fischeri: elements of the luxI promoter, J. Bacteriol. 31 (1999) 1197-1204. https://doi.org/10.1128/JB.01443-07.

[40]

R. Tang, J.L. Zhu, L.F. Feng, et al., Characterization of LuxI/LuxR and their regulation involved in biofilm formation and stress resistance in fish spoilers Pseudomonas fluorescens, Int. J. Food Microbiol. 297 (2018) 60-71. https://doi.org/10.1016/j.ijfoodmicro.2018.12.011.

[41]

J.T. Xu, X.Q. Liu, X.X. Yu, et al., Identification and characterization of sequence signatures in the Bacillus subtilis promoter Pylb for tuning promoter strength, Biotech. Let. 42 (2020) 115-124. https://doi.org/10.1007/s10529-019-02749-4.

[42]

J. Yang, H.M. Cai, J. Liu, et al., Controlling AOX1 promoter strength in Pichia pastoris by manipulating poly (dA:dT) tracts, Sci. Rep. 8 (2018) 1-11. https://doi.org/10.1038/s41598-018-19831-y.

[43]

H. Alper, C. Fischer, E. Nevoigt, et al., Tuning genetic control through promoter engineering, P. Natl. Acad. Sci. U.S.A. 102 (2005) 12678-12683. https://doi.org/10.1073/pnas.0504604102.

[44]

A.K. Brödel, A. Jaramillo, M. Isalan, Engineering orthogonal dual transcription factors for multi-input synthetic promoters, Nat. Commun. 13858 (2016) 1-9. https://doi.org/10.1038/ncomms13858.

[45]

D.Y. Cheng, C.C. Jiang, J.C. Xu, et al., Characteristics and applications of alginate lyases: a review, Int. J. Biol. Macromol. 164 (2020) 1304-1320. https://doi.org/10.1016/j.ijbiomac.2020.07.199.

Food Science and Human Wellness
Pages 1841-1849
Cite this article:
Cao Z, Liu Z, Zhang G, et al. PluxI mutants with different promoting period and their application for quorum sensing regulated protein expression. Food Science and Human Wellness, 2023, 12(5): 1841-1849. https://doi.org/10.1016/j.fshw.2023.02.048

760

Views

24

Downloads

1

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 26 January 2022
Revised: 18 March 2022
Accepted: 01 April 2022
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return