AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Protective effects of peptide KSPLY derived from Hericium erinaceus on H2O2-induced oxidative damage in HepG2 cells

Zhengli XuQiuhui HuMinhao XieJianhui LiuAnxiang SuHui XuWenjian Yang( )
College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 21023 China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Reactive oxygen species (ROS)-induced oxidative damage is strongly associated with the pathogenesis of chronic diseases, and natural antioxidant peptides have good abilities of scavenging ROS. The antioxidant activity of peptide Lys-Ser-Pro-Leu-Tyr (KSPLY) derived from Hericium erinaceus remains unclear. In the present study, the antioxidant effect and mechanism of KSPLY on H2O2-induced oxidative damage in HepG2 cells were investigated. The results indicated that KSPLY exhibited the antioxidant capacity in H2O2-induced HepG2 cells by enhancing superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities. In comparison with the H2O2-treated damage group, the apoptosis rate, ROS level, and malondialdehyde (MDA) content of HepG2 cells treated with KSPLY were significantly decreased. The H. Erinaceus-derived peptide KSPLY pretreatment promoted the expression of detoxification and antioxidant enzymes via the Keap1/Nrf2 signal pathway, thereby inhibiting the generation of ROS and MDA. In conclusion, the H. erinaceus-derived peptide KSPLY effectively protected HepG2 cells against H2O2-induced oxidative damage, and it provided a theoretical basis for the further development of new natural antioxidants.

References

[1]

M.A. Khan, M. Tania, R. Liu, et al., Hericium erinaceus: an edible mushroom with medicinal values, Complement. Integr. Med. 10 (2013) 253-258. https://doi.org/10.1515/jcim-2013-0001.

[2]

C. Chaiyasut, B.S. Sivamaruthi, Anti-hyperglycemic property of Hericium erinaceus – a mini review, Asian Pac. J. Trop. Biomed. 7 (2017) 1036-1040. https://doi.org/10.1016/j.apjtb.2017.09.024.

[3]

G. Hetland, J.M. Tangen, F. Mahmood, et al., Antitumor, anti-inflammatory and antiallergic effects of Agaricus blazei mushroom extract and the related medicinal Basidiomycetes mushrooms, Hericium erinaceus and Grifola frondosa: a review of preclinical and clinical studies, Nutrients 12(5) (2020) 1339. https://doi.org/10.3390/nu12051339.

[4]

E. Yuan, S. Nie, L. Liu, et al., Study on the interaction of Hericium erinaceus mycelium polysaccharides and its degradation products with food additive silica nanoparticle, Food Chem. X. 12 (2021) 100172. https://doi.org/10.1016/j.fochx.2021.100172.

[5]

D.H. Kim, S.R. Park, T. Debnath, et al., Evaluation of the antioxidant activity and anti-inflammatory effect of Hericium erinaceus water extracts, Korean J. Med. Crop Sci. 21 (2013) 112-117. https://doi.org/10.7783/KJMCS.2013.21.2.112.

[6]

K.A. Chang, H.N. Kow, T.E. Tan, et al., Effect of domestic cooking methods on total phenolic content, antioxidant activity and sensory characteristics of Hericium erinaceus, Int. J. Food Sci. Technol. 56 (2021) 5639-5646. https://doi.org/10.1111/ijfs.15158.

[7]

X. Zeng, H. Ling, J. Yang, et al., Proteome analysis provides insight into the regulation of bioactive metabolites in Hericium erinaceus, Gene 666 (2018) 108-115. https://doi.org/10.1016/j.gene.2018.05.020.

[8]

Y.H. Yu, Q.H. Hu, J.H. Liu, et al., Isolation, purification and identification of immunologically active peptides from Hericium erinaceus, Food Chem. Toxicol. 151 (2021) 112111. http://dx.doi.org/10.1016/j.fct.2021.112111.

[9]

J. Wu, J. Huo, M. Huang, et al., Structural characterization of a tetrapeptide from sesame flavor-type Baijiu and its preventive effects against AAPH-induced oxidative stress in HepG2 cells, J. Agric. Food Chem. 65 (2017) 10495-10504. http://dx.doi.org/10.1021/acs.jafc.7b04815.

[10]

E.C. Cheung, K.H. Vousden, The role of ROS in tumour development and progression, Nat. Rev. Cancer (2022) 1-18. https://doi.org/10.1038/s41568-021-00435-0.

[11]

Y.A. Hajam, R. Rani, S.Y. Ganie, et al., Oxidative stress in human pathology and aging: molecular mechanisms and perspectives, Cells 11 (2022) 552. https://doi.org/10.3390/cells11030552.

[12]

M. Tu, X. Fan, J. Shi, et al., 2-Fluorofucose attenuates hydrogen peroxide-induced oxidative stress in HepG2 cells via Nrf2/keap1 and NF-κB signaling pathways, Life 12 (2022) 406. https://doi.org/10.3390/life12030406.

[13]

L. Zhang, Z. Du, L. He, et al., ROS-induced oxidative damage and mitochondrial dysfunction mediated by inhibition of SIRT3 in cultured cochlear cells, Neural Plast. 2022 (2022) 5567174. https://doi.org/10.1155/2022/5567174.

[14]

H. Alkadi, A review on free radicals and antioxidants, Infect. Disord. Drug Targets 20 (2020) 16-26. https://doi.org/10.2174/1871526518666180628124323.

[15]

P. Chandra, R.K. Sharma, D.S. Arora, Antioxidant compounds from microbial sources: a review, Food Res. Int. 129 (2020) 108849. https://doi.org/10.1016/j.foodres.2019.108849.

[16]

F. Yu, K. He, X. Dong, et al., Immunomodulatory activity of low molecular-weight peptides from Nibea japonica skin in cyclophosphamide-induced immunosuppressed mice, J. Funct. Foods 68 (2020) 103888. https://doi.org/10.1016/j.jff.2020.103888.

[17]

H. Liu, H. Ye, C. Sun, et al., Antioxidant activity in HepG2 cells, immunomodulatory effects in RAW 264.7 cells and absorption characteristics in Caco-2 cells of the peptide fraction isolated from Dendrobium aphyllum, Int. J. Food Sci. Technol. 53 (2018) 2027-2036. https://doi.org/10.1111/ijfs.13783.

[18]

X.Y. Yuan, W.B. Liu, C.C. Wang, et al., Evaluation of antioxidant capacity and immunomodulatory effects of cottonseed meal protein hydrolysate and its derivative peptides for hepatocytes of blunt snout bream (Megalobrama amblycephala), Fish Shellfish Immunol. 98 (2020) 10-18. https://doi.org/10.1016/j.fsi.2020.01.008.

[19]

W. Jiang, S. He, D. Su, et al., Synthesis, characterization of tuna polypeptide selenium nanoparticle, and its immunomodulatory and antioxidant effects in vivo, Food Chem. 383 (2022) 132405. https://doi.org/10.1016/j.foodchem.2022.132405.

[20]

F. Li, R.E.N. Dayong, C.U.I. Lingyu, et al., Antifatigue, antioxidant and immunoregulatory effects of peptides hydrolyzed from Manchurian walnut (Juglans mandshurica Maxim.) on mice, Oil Gas Sci. Technol. 1 (2018) 44-52. https://doi.org/10.3724/SP.J.1447.GOST.2018.18028.

[21]

F. Tonolo, A. Folda, L. Cesaro, et al., Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway, J. Funct. Foods 64 (2020) 103696. https://doi.org/10.1016/j.jff.2019.103696.

[22]

F. Tonolo, A. Folda, L. Cesaro, et al., Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway, J. Funct. Foods 64 (2020) 103696. https://doi.org/10.1016/j.jff.2019.103696.

[23]

J. Han, Z. Huang, S. Tang, et al., The novel peptides ICRD and LCGEC screened from tuna roe show antioxidative activity via Keap1/Nrf2-ARE pathway regulation and gut microbiota modulation, Food Chem. 327 (2020) 127094. https://doi.org/10.1016/j.foodchem.2020.127094.

[24]

F. Tonolo, L. Moretto, A. Grinzato, et al., Fermented soy-derived bioactive peptides selected by a molecular docking approach show antioxidant properties involving the Keap1/Nrf2 pathway, Antioxidants 9 (2020) 1306. https://doi.org/10.3390/antiox9121306.

[25]

W. Tu, H. Wang, S. Li, et al., The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases, Aging Dis. 10(3) (2019) 637. https://doi.org/10.14336/AD.2018.0513.

[26]

A. Paunkov, D.V. Chartoumpekis, P.G. Ziros, et al., A bibliometric review of the Keap1/Nrf2 pathway and its related antioxidant compounds, Antioxidants 8 (2019) 353. https://doi.org/10.3390/antiox8090353.

[27]

C. Yu, J.H. Xiao, The Keap1-Nrf2 system: a mediator between oxidative stress and aging, Oxid. Med. Cell. Longev. 2021 (2021) 6635460. https://doi.org/10.1155/2021/6635460.

[28]

Z. Guo, Z. Mo, Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases, J. Tissue Eng. Regen. M. 14 (2020) 869-883. https://doi.org/10.1002/term.3053.

[29]

S. Qin, D.X. Hou, Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals, Mol. Nutr. Food Res. 60 (2016) 1731-1755. https://doi.org/10.1002/mnfr.201501017.

[30]

Y. Liang, Q. Lin, P. Huang, et al., Rice bioactive peptide binding with TLR4 to overcome H2O2-induced injury in human umbilical vein endothelial cells through NF-κB signaling, J. Agric. Food Chem. 66 (2018) 440-448. https://doi.org/10.1021/acs.jafc.7b04036.

[31]

Y. Hu, S. Lu, Y. Li, et al., Protective effect of antioxidant peptides from grass carp scale gelatin on the H2O2-mediated oxidative injured HepG2 cells, Food Chem. 373 (2022) 131539. https://doi.org/10.1016/j.foodchem.2021.131539.

[32]

Z. Xia, J. Miao, B. Chen, et al., Purification, identification, and antioxidative mechanism of three novel selenium-enriched oyster antioxidant peptides, Food Res. Int. 2022 (2022) 111359. https://doi.org/10.1016/j.foodres.2022.111359.

[33]

M.J. Chen, C.H. Chou, C.T. Shun, et al., Iron suppresses ovarian granulosa cell proliferation and arrests cell cycle through regulating p38 mitogen-activated protein kinase/p53/p21 pathway, Biol. Reprod. 97 (2017) 438-448. https://doi.org/10.1093/biolre/iox099.

[34]

A.A. Caro, A.I. Cederbaum, Antioxidant properties of S-adenosyl-L-methionine in Fe2+-initiated oxidations, Free Radic. Biol. Med. 36 (2004) 1303-1316. https://doi.org/10.1093/biolre/iox099.

[35]

Z. Wu, H. Wang, S. Fang, et al., Roles of endoplasmic reticulum stress and autophagy on H2O2-induced oxidative stress injury in HepG2 cells, Mol. Med. Rep. 18 (2018) 4163-4174. https://doi.org/10.3892/mmr.2018.9443.

[36]

S. Salla, R. Sunkara, S. Ogutu, et al., Antioxidant activity of papaya seed extracts against H2O2 induced oxidative stress in HepG2 cells, LWT-Food Sci. Technol. 66 (2016) 293-297. https://doi.org/10.1016/j.lwt.2015.09.008.

[37]

S.Y. Lee, D.Y. Lee, H.J. Kang, et al., Effect of emulsification on the antioxidant capacity of beef myofibrillar protein-derived bioactive peptides during in vitro human digestion and on the hepatoprotective activity using HepG2 cells, J. Funct. Foods 81 (2021) 104477. http://dx.doi.org/10.1016/j.jff.2021.104477.

[38]

G.N. Kim, H.D. Jang, Protective mechanism of quercetin and rutin using glutathione metabolism on H2O2-induced oxidative stress in HepG2 cells, Ann. NY Acad. Sci. 1171 (2009) 530-537. https://doi.org/10.1111/j.1749-6632.2009.04690.x.

[39]

Y. Zhuang, Q. Ma, Y. Guo, et al., Protective effects of rambutan (Nephelium lappaceum) peel phenolics on H2O2-induced oxidative damages in HepG2 cells and D-galactose-induced aging mice, Food Chem. Toxicol. 108 (2017) 554-562. https://doi.org/10.1016/j.fct.2017.01.022.

[40]

S. Zhuang, R. Yu, J. Zhong, et al., Rhein from rheum rhabarbarum inhibits hdrogen-peroxide-induced oxidative stress in intestinal epithelial cells partly through PI3K/Akt-mediated Nrf2/HO-1 pathways, J. Agric. Food Chem. 67 (2019) 2519-2529. https://doi.org/10.1021/acs.jafc.9b00037.

[41]

M. Rakotoarisoa, B. Angelov, V.M. Garamus, et al., Curcumin-and fish oil-loaded spongosome and cubosome nanoparticles with neuroprotective potential against H2O2-induced oxidative stress in differentiated human SH-SY5Y cells, ACS Omega 4 (2019) 3061-3073. https://doi.org/10.1021/acsomega.8b03101.

[42]

Y.Z. Wang, Y.Q. Zhao, Y.M. Wang, et al., Antioxidant peptides from antarctic Krill (Euphausia superba) hydrolysate: preparation, identification and cytoprotection on H2O2-Induced oidative stress, J. Funct. Foods 86 (2021) 104701. http://dx.doi.org/10.1016/j.jff.2021.104701.

[43]

S. Hossain, E. Lash, A.O. Veri, et al., Functional connections between cell cycle and proteostasis in the regulation of Candida albicans morphogenesis, Cell Rep. 34 (2021) 108781. http://dx.doi.org/10.1016/j.celrep.2021.108781.

[44]

Z.J. Long, J.D. Wang, J.Q. Xu, et al., cGAS/STING cross-talks with cell cycle and potentiates cancer immunotherapy, Mol. Ther. 30 (2022) 1006-1017. http://dx.doi.org/10.1016/j.ymthe.2022.01.044.

[45]

M. Ortiz Martinez, E. Gonzalez de Mejia, S. García Lara, et al., Antiproliferative effect of peptide fractions isolated from a quality protein maize, a white hybrid maize, and their derived peptides on hepatocarcinoma human HepG2 cells, J. Funct. Foods 34 (2017) 36-48. http://dx.doi.org/10.1016/j.jff.2017.04.015.

[46]

J. Fang, J. Lu, Y. Zhang, et al., Structural properties, antioxidant and immune activities of low molecular weight peptides from soybean dregs (okara), Food Chem. X. 12 (2021) 100175. http://dx.doi.org/10.1016/j.fochx.2021.100175.

[47]

C. Bollati, I. Cruz Chamorro, G. Aiello, et al., Investigation of the intestinal trans-epithelial transport and antioxidant activity of two hempseed peptides WVSPLAGRT (H2) and IGFLIIWV (H3), Food Res. Int. 152 (2022) 110720. http://dx.doi.org/10.1016/j.foodres.2021.110720.

[48]

X.M. Hu, Y.M. Wang, Y.Q. Zhao, et al., Antioxidant peptides from the protein hydrolysate of monkfish (Lophius litulon) muscle: purification, identification, and cytoprotective function on HepG2 cells damage by H2O2, Mar. Drugs 18 (2020) 153. https://doi.org/10.3390/md18030153.

[49]

J. Zhang, M. Li, G. Zhang, et al., Identification of novel antioxidant peptides from snakehead (Channa argus) soup generated during gastrointestinal digestion and insights into the anti-oxidation mechanisms, Food Chem. 337 (2021) 127921. http://dx.doi.org/10.1016/j.foodchem.2020.127921.

[50]

R. Liang, S. Cheng, Y. Dong, et al., Intracellular antioxidant activity and apoptosis inhibition capacity of PEF-treated KDHCH in HepG2 cells, Food Res. Int. 121 (2019) 336-347. http://dx.doi.org/10.1016/j.foodres.2019.03.049.

[51]

H. Liu, J. Liang, G. Xiao, et al., Active sites of peptides Asp-Asp-Asp-Tyr and Asp-Tyr-Asp-Asp protect against cellular oxidative stress, Food Chem. 366 (2022) 130626. http://dx.doi.org/10.1016/j.foodchem.2021.130626.

[52]

X. Zhang, P. Noisa, J. Yongsawatdigul, Identification and characterization of tilapia antioxidant peptides that protect AAPH-induced HepG2 cell oxidative stress, J. Funct. Foods 86 (2021) 104662. http://dx.doi.org/10.1016/j.jff.2021.104662.

[53]

H. Jin, Y. Li, K. Shen, et al., Regulation of H2O2-induced cells injury through Nrf2 signaling pathway: an introduction of a novel cysteic acid-modified peptide, Bioorg. Chem. 110 (2021) 104811. http://dx.doi.org/10.1016/j.bioorg.2021.104811.

[54]

G. Li, J. Zhan, L. Hu, et al., Identification of a new antioxidant peptide from porcine plasma by in vitro digestion and its cytoprotective effect on H2O2 induced HepG2 model, J. Funct. Foods 86 (2021) 104679. http://dx.doi.org/10.1016/j.jff.2021.104679.

[55]

X.Y. Wang, J.Y. Yin, M.M. Zhao, et al., Gastroprotective activity of polysaccharide from Hericium erinaceus against ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer, and its antioxidant activities, Carbohydr. Polym. 186 (2018) 100-109. http://dx.doi.org/10.1016/j.carbpol.2018.01.004.

[56]

Y. Liu, Q.F. Shi, Y.C. Ye, et al., Activated O2(*-) and H2O2 mediated cell survival in SU11274-treated non-small-cell lung cancer A549 cells via c-Met-PI3K-Akt and c-Met-Grb2/SOS-Ras-p38 pathways, J. Pharmacol. Sci. 119 (2012) 150-159. http://dx.doi.org/10.1254/jphs.12048fp.

[57]

J. Huang, L. Wu, S. Tashiro, et al., Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK, and mitochondrial signaling pathways, J. Pharmacol. Sci. 107 (2008) 370-379. http://dx.doi.org/10.1254/jphs.08044fp.

[58]

Z. Karami, S.H. Peighambardoust, J. Hesari, et al., Antioxidant, anticancer and ACE-inhibitory activities of bioactive peptides from wheat germ protein hydrolysates, Food Biosci. 32 (2019) 100450. http://dx.doi.org/10.1016/j.fbio.2019.100450.

[59]

C. Wen, J. Zhang, Y. Feng, et al., Purification and identification of novel antioxidant peptides from watermelon seed protein hydrolysates and their cytoprotective effects on H2O2-induced oxidative stress, Food Chem. 327 (2020) 127059. http://dx.doi.org/10.1016/j.foodchem.2020.127059.

[60]

J. Wang, T. Wu, L. Fang, et al., Peptides from walnut (Juglans mandshurica Maxim.) protect hepatic HepG2 cells from high glucose-induced insulin resistance and oxidative stress, Food Funct. 11 (2020) 8112-8121. https://doi.org/10.1039/D0FO01753A.

[61]

Y. Cheng, F. Luo, Z. Zeng, et al., DFT-based quantitative structure–activity relationship studies for antioxidant peptides, Struct. Chem. 26 (2014) 739-747. http://dx.doi.org/10.1007/s11224-014-0533-0.

[62]

T. Peme, L.O. Olasunkanmi, I. Bahadur, et al., Adsorption and corrosion inhibition studies of some selected dyes as corrosion inhibitors for mild steel in acidic medium: gravimetric, electrochemical, quantum chemical studies and synergistic effect with iodide ions, Molecules 20 (2015) 16004-16029. http://dx.doi.org/10.3390/molecules200916004.

[63]

C. Alasalvar, M.S. Soylu, A. Guder, et al., Molecular structure, quantum mechanical calculation and radical scavenging activities of (E)-4,6-dibromo-2-[(3,5-dimethylphenylimino)methyl]-3-methoxyphenol and (E)-4,6-dibromo-2-[(2,6-dimethylphenylimino)methyl]-3-methoxyphenol compounds, Spectrochim. Acta A Mol. Biomol. Spectrosc. 130 (2014) 357-366. http://dx.doi.org/10.1016/j.saa.2014.03.069.

[64]

Y. Oh, C.B. Ahn, J.Y. Je, Cytoprotective role of edible seahorse (Hippocampus abdominalis)-derived peptides in H2O2-induced oxidative stress in human umbilical vein endothelial cells, Mar. Drugs 19 (2021) 86. http://dx.doi.org/10.3390/md19020086.

[65]

G. Yi, J. Din, F. Zhao, et al., Effect of soybean peptides against hydrogen peroxide induced oxidative stress in HepG2 cells via Nrf2 signaling, Food Funct. 11 (2020) 2725-2737. https://doi.org/10.1039/C9FO01466G.

[66]

X. Zhao, Y.J. Cui, S.S. Bai, et al., Antioxidant activity of novel casein-derived peptides with microbial proteases as characterized via Keap1-Nrf2 pathway in HepG2 cells, J. Microbiol. Biotechnol. 31 (2021) 1163-1174. https://doi.org/10.4014/jmb.2104.04013.

[67]

Y.M. Wang, X.Y. Li, J. Wang, et al., Antioxidant peptides from protein hydrolysate of skipjack tuna milt: purification, identification, and cytoprotection on H2O2 damaged human umbilical vein endothelial cells, Process Biochem. 113 (2022) 258-269. https://doi.org/10.1016/j.procbio.2022.01.008.

[68]

K. Lingappan, NF-κB in oxidative stress, Curr. Opin. Toxicol. 7 (2018) 81-86. https://doi.org/10.1016/j.cotox.2017.11.002.

[69]

M. Zhang, Z. Yan, L. Bu, et al., Rapeseed protein-derived antioxidant peptide RAP alleviates renal fibrosis through MAPK/NF-κB signaling pathways in diabetic nephropathy, Drug Des. Dev. Ther. 12 (2018) 1255-1268. http://dx.doi.org/10.2147/DDDT.S162288.

[70]

Y.J. Cao, Y.M. Zhang, J.P. Qi, et al., Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway, Int. Immunopharmacol. 28 (2015) 1018-1025. https://doi.org/10.1016/j.intimp.2015.07.037.

[71]

Raish M., Ahmad A., Ansari M.A., et al., Momordica charantia polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through NF-κB signaling pathway inhibition, Int. J. Biol. Macromol. 111 (2018) 193-199. https://doi.org/10.1016/j.ijbiomac.2018.01.008

[72]

H.M. Wang, L. Fu, C.C. Cheng, et al., Inhibition of LPS-induced oxidative damages and potential anti-inflammatory effects of phyllanthus emblica extract via down-regulating NF-κB, COX-2, and iNOS in RAW 264.7 cells, Antioxidants 8 (2019) 270. https://doi.org/10.3390/antiox8080270.

[73]

T. Neamatallah, N.A. El Shitany, A.T. Abbas, et al., Honey protects against cisplatin-induced hepatic and renal toxicity through inhibition of NF-κB-mediated COX-2 expression and the oxidative stress dependent BAX/Bcl-2/caspase-3 apoptotic pathway, Food Funct. 9 (2018) 3743-3754. https://doi.org/10.1039/C8FO00653A.

[74]

L. Bai, W. Shi, J. Liu, et al., Protective effect of pilose antler peptide on cerebral ischemia/reperfusion (I/R) injury through Nrf-2/OH-1/NF-κB pathway, Int. J. Biol. Macromol. 102 (2017) 741-748. https://doi.org/10.1016/j.ijbiomac.2017.04.091.

[75]

H. Zhao, Y. Wang, Y. Liu, et al., ROS-induced hepatotoxicity under cypermethrin: involvement of the crosstalk between Nrf2/Keap1 and NF-κB/IκB-α pathways regulated by proteasome, Environ.Sci. Technol. 55 (2021) 6171-6183. https://doi.org/10.1021/acs.est.1c00515.

Food Science and Human Wellness
Pages 1893-1904
Cite this article:
Xu Z, Hu Q, Xie M, et al. Protective effects of peptide KSPLY derived from Hericium erinaceus on H2O2-induced oxidative damage in HepG2 cells. Food Science and Human Wellness, 2023, 12(5): 1893-1904. https://doi.org/10.1016/j.fshw.2023.02.041

776

Views

82

Downloads

21

Crossref

19

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 30 March 2022
Revised: 13 May 2022
Accepted: 05 June 2022
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return