AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A novel lectin from mushroom Phellodon melaleucus displays hemagglutination activity, and antitumor activity in a B16 melanoma mouse model

Yuanhui LiaPeng WangaZejun ZhangbQinghong Liua( )
Department of Vegetables, College of Horticulture, China Agricultural University, Beijing 100193, China
College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100193, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

A novel lectin (termed PML) was purified from fruiting bodies of the edible mushroom Phellodon melaleucus (division Basidiomycota) by ion exchange, hydrophobic interaction, and gel filtration chromatographies, with overall titer recovery ~60% and 20-fold purification. PML displayed hemagglutination activity 13319 units/mg toward rabbit erythrocytes. SDS-PAGE and gel filtration analyses revealed that PML is a homodimeric lectin with a molecular weight of 28.8 kDa. PML hemagglutination activity was not inhibited by various simple sugars or their derivatives, but was enhanced by cations Ca2+, Mg2+, Zn2+, and Cu2+. The activity was stable in pH range 6–9 and in the temperature range 20–60 °C. Circular dichroism (CD) spectroscopic analysis showed that PML was composed primarily of β-sheets with low α-helix content. In a B16 melanoma mouse model, PML treatment significantly inhibited tumor growth, and increased cytokine IL-10 content. Our findings suggest that PML is a potential anticancer therapeutic agent.

References

[1]

N. Sharon, H. Lis, History of lectins: from hemagglutinins to biological recognition molecules, Glycobiology 14(11) (2004) 53-62. https://doi.org/10.1093/glycob/cwh122.

[2]

R.S. Singh, A.K. Tiwary, J.F. Kennedy, Lectins: sources, activities, and applications, Crit. Rev. Biotechnol. 19(2) (2008) 145-178. https://doi.org/10.1080/0738-859991229224.

[3]

W. van Breedam, S. Pohlmann, H.W. Favoreel, et al., Bitter-sweet symphony: glycan-lectin interactions in virus biology, FEMS Microbiol. Rev. 38(4) (2014) 598-632. https://doi.org/10.1111/1574-6976.12052.

[4]
J. Tiralongo, A.P. Moran, Chapter 27 - Bacterial lectin-like interactions in cell recognition and adhesion, in: O. Holst, P.J. Brennan, M.V. Itzstein, A.P. Moran (Eds.), Microbial Glycobiology, Academic Press, San Diego (2010) 549-565. https://doi.org/10.1016/B978-0-12-374546-0.00027-4.
[5]

Y. Kobayashi, H. Kawagishi, Fungal lectins: a growing family, Methods Mol. Biol. 1200 (2014) 15-38. https://doi.org/10.1007/978-1-4939-1292-6_2.

[6]

B. Liu, H.J. Bian, J.K. Bao, Plant lectins: potential antineoplastic drugs from bench to clinic, Cancer Lett. 287(1) (2010) 1-12. https://doi.org/10.1016/j.canlet.2009.05.013.

[7]

D.C. Kilpatrick, Animal lectins: a historical introduction and overview, Biochim. Biophys. Acta Gen. Subj. 1572(2/3) (2002) 187-197. https://doi.org/10.1016/s0304-4165(02)00308-2.

[8]

P. Gemeiner, D. Mislovicova, J. Tkac, et al., Lectinomics Ⅱ. A highway to biomedical/clinical diagnostics, Biotechnol. Adv. 27(1) (2009) 1-15. https://doi.org/10.1016/j.biotechadv.2008.07.003.

[9]

S. Kumar Panda, W. Luyten, Medicinal mushrooms: clinical perspective and challenges, Drug Discov. Today 27(2) (2021) 636-651. https://doi.org/10.1016/j.drudis.2021.11.017.

[10]

J. Erjavec, J. Kos, M. Ravnikar, et al., Proteins of higher fungi--from forest to application, Trends Biotechnol. 30(5) (2012) 259-273. https://doi.org/10.1016/j.tibtech.2012.01.004.

[11]

Y. Wang, Y. Zhang, J. Shao, et al., Potential immunomodulatory activities of a lectin from the mushroom Latiporus sulphureus, Int. J. Biol. Macromol. 130 (2019) 399-406. https://doi.org/10.1016/j.ijbiomac.2019.02.150.

[12]

R.S. Singh, A.K. Walia, J.F. Kennedy, Mushroom lectins in biomedical research and development, Int. J. Biol. Macromol. 151 (2020) 1340-1350. https://doi.org/10.1016/j.ijbiomac.2019.10.180.

[13]

H.X. Wang, W.K. Liu, T.B. Ng, et al., The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum, Immunopharmacology 31(2/3) (1996) 205-211. https://doi.org/10.1016/0162-3109(95)00049-6.

[14]

R.S. Singh, H.P. Kaur, J.R. Kanwar, Mushroom lectins as promising anticancer substances, Curr. Protein Pept. Sci. 17(8) (2016) 797-807. https://doi.org/10.2174/1389203717666160226144741.

[15]

R. Baird, L.E. Wallace, G. Baker, et al., Stipitate hydnoid fungi of the temperate southeastern United States, Fungal Divers. 62(1) (2013) 41-114. https://doi.org/10.1007/s13225-013-0261-6.

[16]

M. Stadler, T. Anke, J. Dasenbrock, et al., Phellodonic acid, a new biologically active hirsutane derivative from Phellodon melaleucus (Thelephoraceae, Basidiomycetes), Z. Naturforsch., C, J. Biosci. 48(7/8) (1993) 545-549. https://doi.org/10.1515/znc-1993-7-803.

[17]

S. Kim, A novel core 1 O-linked glycan-specific binding lectin from the fruiting body of Hericium erinaceus, Int. J. Biol. Macromol. 107(Pt B) (2018) 1528-1537. https://doi.org/10.1016/j.ijbiomac.2017.10.018.

[18]

U.K. Laemmli, M. Favre, Maturation of the head of bacteriophage T4. I. DNA packaging events, J. Mol. Biol. 80(4) (1973) 575-599. https://doi.org/10.1016/0022-2836(73)90198-8.

[19]

W. Rittidach, N. Paijit, P. Utarabhand, Purification and characterization of a lectin from the banana shrimp Fenneropenaeus merguiensis hemolymph, Biochim. Biophys. Acta Gen. Subj. 1770(1) (2007) 106-114. https://doi.org/10.1016/j.bbagen.2006.06.016.

[20]

H. Wang, J. Gao, T.B. Ng, A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus, Biochem. Biophys. Res. Commun. 275(3) (2000) 810-816. https://doi.org/10.1006/bbrc.2000.3373.

[21]

H.X. Wang, T.B. Ng, V.E. Ooi, Lectin activity in fruiting bodies of the edible mushroom Tricholoma mongolicum, Biochem. Mol. Biol. Int. 44(1) (1998) 135-141. https://doi.org/10.1080/15216549800201142.

[22]

I. Pajic, Z. Kljajic, N. Dogovic, et al., A novel lectin from the sponge Haliclona cratera: isolation, characterization and biological activity, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 132(2) (2002) 213-221. https://doi.org/10.1016/s1532-0456(02)00068-6.

[23]

H. Biswas, R. Chattopadhyaya, Thermal, chemical and pH induced unfolding of turmeric root lectin: modes of denaturation, PLoS One 9(8) (2014) 103579-103579. https://doi.org/10.1371/journal.pone.0103579.

[24]

A. Micsonai, F. Wien, L. Kernya, et al., Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy, Proc. Natl. Acad. Sci. U.S.A. 112(24) (2015) 3095-3103. https://doi.org/10.1073/pnas.1500851112.

[25]

Y. Hou, Y. Hou, L. Yanyan, et al., Extraction and purification of a lectin from red kidney bean and preliminary immune function studies of the lectin and four Chinese herbal polysaccharides, J. Biomed. Biotechnol. 2010 (2010) 217342. https://doi.org/10.1155/2010/217342.

[26]

Y. Wang, B. Wu, J. Shao, et al., Extraction, purification and physicochemical properties of a novel lectin from Laetiporus sulphureus mushroom, LWT-Food Sci. Technol. 91 (2018) 151-159. https://doi.org/10.1016/j.lwt.2018.01.032.

[27]

P. Chumkhunthod, S. Rodtong, S. Lambert, et al., Purification and characterization of an N-acetyl-D-galactosamine-specific lectin from the edible mushroom Schizophyllum commune, Biochim. Biophys. Acta Gen. Subj. 1762(3) (2006) 326-332. https://doi.org/10.1016/j.bbagen.2006.01.015.

[28]

G. Zhang, Q. Chen, J. Hua, et al., An inulin-specific lectin with anti-HIV-1 reverse transcriptase, antiproliferative, and mitogenic activities from the edible mushroom Agaricus bitorquis, Biomed. Res. Int. 2019 (2019) 1341470. https://doi.org/10.1155/2019/1341370.

[29]

S. Albores, P. Mora, M. Bustamante, et al., Purification and applications of a lectin from the mushroom Gymnopilus spectabilis, Appl. Biochem. Biotechnol. 172(4) (2014) 2081-2090. https://doi.org/10.1007/s12010-013-0665-5.

[30]

K. Feng, Q. Liu, T. Ng, et al., Isolation and characterization of a novel lectin from the mushroom Armillaria luteo-virens, Biochem. Biophys. Res. Commun. 345(4) (2006) 1573-1578. https://doi.org/10.1016/j.bbrc.2006.05.061

[31]

X. Dan, W. Liu, T.B. Ng, Development and applications of lectins as biological tools in biomedical research, Med. Res. Rev. 36(2) (2016) 221-247. https://doi.org/10.1002/med.21363.

[32]

R.S. Singh, R. Bhari, H.P. Kaur, Mushroom lectins: current status and future perspectives, Crit. Rev. Biotechnol. 30(2) (2010) 99-126. https://doi.org/10.3109/07388550903365048.

[33]

H. Wang, T.B. Ng, Q. Liu, A novel lectin from the wild mushroom Polyporus adusta, Biochem. Biophys. Res. Commun. 307(3) (2003) 535-539. https://doi.org/10.1016/s0006-291x(03)01230-0.

[34]

S. Tomohiro, A. Tomoya, U. Kanako, et al., Purification and characterization of a lectin from the mushroom Hypsizigus marmoreus, Mycoscience 56(4) (2015) 359-363. https://doi.org/10.1016/j.myc.2014.11.001.

[35]

Y.R. Li, Q.H. Liu, H.X. Wang, et al., A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus, Biochim. Biophys. Acta Gen. Subj. 1780(1) (2008) 51-57. https://doi.org/10.1016/j.bbagen.2007.09.004.

[36]

H. Wang, T.B. Ng, V.E.C. Ooi, Lectins from mushrooms, Mycol. Res. 102(8) (1998) 897-906. https://doi.org/10.1017/S0953756298006200.

[37]

N. Sreerama, R.W. Woody, Computation and analysis of protein circular dichroism spectra, Meth. Enzymol. 383 (2004) 318-351. https://doi.org/10.1016/S0076-6879(04)83013-1.

[38]

J.X. Mesquita, T.V. de Brito, T.P.C. Fontenelle, et al., Lectin from red algae Amansia multifida Lamouroux: extraction, characterization and anti-inflammatory activity, Int. J. Biol. Macromol. 170 (2021) 532-539. https://doi.org/10.1016/j.ijbiomac.2020.12.203.

[39]

S. Mondal, M.J. Swamy, Purification, biochemical/biophysical characterization and chitooligosaccharide binding to BGL24, a new PP2-type phloem exudate lectin from bottle gourd (Lagenaria siceraria), Int. J. Biol. Macromol. 164 (2020) 3656-3666. https://doi.org/10.1016/j.ijbiomac.2020.08.246.

[40]

C. Zhao, H. Sun, X. Tong, et al., An antitumour lectin from the edible mushroom Agrocybe aegerita, Biochem. J. 374(2) (2003) 321-327. https://doi.org/10.1042/BJ20030300.

[41]

G. Zhang, J. Sun, H. Wang, et al., First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom, Phytomedicine 17(10) (2010) 775-781. https://doi.org/10.1016/j.phymed.2010.02.001.

[42]

G. Cordara, H.C. Winter, I.J. Goldstein, et al., The fungal chimerolectin MOA inhibits protein and DNA synthesis in NIH/3T3 cells and may induce BAX-mediated apoptosis, Biochem. Biophys. Res. Commun. 447(4) (2014) 586-589. https://doi.org/10.1016/j.bbrc.2014.04.043.

[43]

F.S. Coulibaly, B. Youan, Current status of lectin-based cancer diagnosis and therapy, AIMS Mol. Sci. 4(1) (2017) 1-27. https://doi.org/10.3934/molsci.2017.1.1.

[44]

Z. Jiang, S. Wang, J. Hou, et al., Effects of carboxymethyl chitosan oligosaccharide on regulating immunologic function and inhibiting tumor growth, Carbohydr. Polym. 250 (2020) 116994. https://doi.org/10.1016/j.carbpol.2020.116994.

[45]

W. Wang, R. Thomas, O. Sizova, et al., Thymic function associated with cancer development, relapse, and antitumor immunity - a mini-review, Front. Immunol. 11 (2020). https://doi.org/10.3389/fimmu.2020.00773.

[46]
O. Mellbye, (1970). Spleen and Immunity. In: Lennert, K., Harms, D. (eds) Die Milz / The Spleen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-92998-4_15.
[47]

R. Ennamany, O. Kretz, A. Badoc, et al., Effect of bolesatine, a glycoprotein from boletus-satanas, on rat thymus in-vivo, Toxicology 89(2) (1994) 113-118. https://doi.org/10.1016/0300-483X(94)90219-4.

[48]

O. Eton, M.G. Rosenblum, S.S. Legha, et al., Phase I trial of subcutaneous recombinant human interleukin-2 in patients with metastatic melanoma, Cancer 95(1) (2002) 127-134. https://doi.org/10.1002/cncr.10631.

[49]

S. Huang, S.E. Ullrich, M. Bar-Eli, Regulation of tumor growth and metastasis by interleukin-10: the melanoma experience, J. Interferon Cytokine Res. 19(7) (1999) 697-703. https://doi.org/10.1089/107999099313532.

[50]

D. Jorgovanovic, M. Song, L. Wang, et al., Roles of IFN-gamma in tumor progression and regression: a review, Biomark. Res. 8 (2020) 49. https://doi.org/10.1186/s40364-020-00228-x.

[51]

F. Bertrand, A. Montfort, E. Marcheteau, et al., TNF-alpha blockade overcomes resistance to anti-PD-1 in experimental melanoma, Nat. Commun. 8(1) (2017) 2256. https://doi.org/10.1038/s41467-017-02358-7.

[52]

S. Sarray, E. Delamarre, J. Marvaldi, et al., Lebectin and lebecetin, two C-type lectins from snake venom, inhibit α5β1 and αv-containing integrins, Matrix Biol. 26(4) (2007) 306-313. https://doi.org/10.1016/j.matbio.2007.01.001.

[53]

J. Jebali, O. Zakraoui, D. Aissaoui, et al., Lebecetin, a snake venom C-type lectin protein, modulates LPS-induced inflammatory cytokine production in human THP-1-derived macrophages, Toxicon 187 (2020) 144-150. https://doi.org/10.1016/j.toxicon.2020.09.001.

[54]

J. Qiao, Z. Liu, C. Dong, et al., Targeting tumors with IL-10 prevents dendritic cell-mediated CD8(+) T Cell apoptosis, Cancer Cell 35(6) (2019) 901-915. https://doi.org/10.1016/j.ccell.2019.05.005.

[55]

M. Saraiva, P. Vieira, A. O'Garra, Biology and therapeutic potential of interleukin-10, J. Exp. Med. 217(1) (2020) 20190418. https://doi.org/10.1084/jem.20190418.

Food Science and Human Wellness
Pages 1885-1892
Cite this article:
Li Y, Wang P, Zhang Z, et al. A novel lectin from mushroom Phellodon melaleucus displays hemagglutination activity, and antitumor activity in a B16 melanoma mouse model. Food Science and Human Wellness, 2023, 12(5): 1885-1892. https://doi.org/10.1016/j.fshw.2023.02.040

774

Views

29

Downloads

6

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 29 March 2022
Revised: 10 April 2022
Accepted: 25 April 2022
Published: 21 March 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return